
Scientific Computation

Hiqmet Kamberaj

Molecular Dynamics 
Simulations in 
Statistical Physics: 
Theory and 
Applications



Scientific Computation

Editorial Board
J.-J. Chattot, Davis, CA, USA
P. Colella, Berkeley, CA, USA
R. Glowinski, Houston, TX, USA
M.Y. Hussaini, Tallahassee, FL, USA
P. Joly, Le Chesnay, France
D.I. Meiron, Pasadena, CA, USA
O. Pironneau, Paris, France
A. Quarteroni, Politecnico di Milano, Milan, Italy

and EPFL, Lausanne, Switzerland
J. Rappaz, Lausanne, Switzerland
R. Rosner, Chicago, IL, USA
P. Sagaut, Paris, France
J.H. Seinfeld, Pasadena, CA, USA
A. Szepessy, Stockholm, Sweden
M.F. Wheeler, Austin, TX, USA



More information about this series at http://www.springer.com/series/718

http://www.springer.com/series/718


Hiqmet Kamberaj

Molecular Dynamics
Simulations in Statistical
Physics: Theory and
Applications



Hiqmet Kamberaj
Computer Engineering
International Balkan University
Skopje, Republic of North Macedonia

Advanced Computing Research Center
University of New York Tirana
Tirana, Albania

ISSN 1434-8322 ISSN 2198-2589 (electronic)
Scientific Computation
ISBN 978-3-030-35701-6 ISBN 978-3-030-35702-3 (eBook)
https://doi.org/10.1007/978-3-030-35702-3

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-35702-3


To the memory of my mother and father



Preface

Computer simulations are used very often to understand and solve practical
problems in the area of statistical physics and biophysics. With proper knowledge
of classical mechanics, thermodynamics, and statistical physics, you will be able to
understand and judge the content of this book.

This book aims to be a recipe for computer simulations with molecular dynamics
techniques in statistical physics, where the main emphases are the macromolecular
systems. Numerical methods introduced in the form of computer algorithms can be
implemented in computers using any desired computer programing language, such
as Fortran 90, C/C++, and others. This book applies some of the discussed numerical
methods and their algorithms in the existing computer programing software of
macromolecular systems, such as the CHARMM program.

In this book, you will find out some advanced concepts of computer simulation
techniques used in statistical physics and a particular understanding of biological
and physical systems. It discusses the molecular dynamics approach in details to
help understand its use in statistical physics problems.

Chapters 1, 2, and 3 introduce the principles of classical mechanics, thermo-
dynamics, and statistical physics, which are necessary concepts to know to better
understand real problems in different fields, such as physics, chemistry, and biology,
when we use the computer simulations for solving them, while Chap. 4 introduces
the use of statistical thermodynamics in understanding biological phenomena.

In Chap. 5, the main theory used for understanding many useful techniques
in a computer simulation, such as calculations by means of molecular dynamics
simulations of the absolute free energy, solvation free energy, and binding free
energy, which have a broad area of applications in physics, chemistry, and biology,
is discussed.

Chapter 6 then introduces molecular dynamics techniques, such as describing
the equations of motion in different statistical ensembles of interest to mimic
real experimental conditions, while Chap. 7 presents molecular mechanics and
represents the primary methods for parameterization of the force fields; in particular,
it discusses traditional and automated force field parameterization methods and
presents the perspectives on the force field developments.
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viii Preface

Chapter 8 further discusses different methods used to determine the frequency
spectrum of the motions in a macromolecular system, namely, the normal modes,
principal component analysis, and the time-lagged auto-encoder machine learning
approach, and an improved modified version of the artificial neural network, called
Bootstrapping Swarm Artificial Neural Network. Besides, it introduces an approach
of how to derive the equations of motion in the reduced essential subspace of the
slow collective variables using the harmonic bath coupling of these variables with
the environmental fast degrees of freedom of the system.

Chapter 9 introduces some elements of the information theory and discusses the
connection between information theory measures and statistical thermodynamics.

Chapter 10 subsequently discusses some technical aspects of the use of molecular
dynamics method in simulations of macromolecular systems. In particular, it
describes the periodic boundary condition, treatment of the long-range interactions,
spherical cutoffs, and equilibration of the molecular dynamics simulations.

Chapter 11 introduces numerical techniques used to solve molecular dynamics
equations of motion using Liouville’s formalism and Trotter factorization scheme.
Besides, the stability of numerical schemes will be discussed by applying to real
physical systems for which the analytical solutions are known.

Finally, in Chap. 12, generalized ensemble molecular dynamics simulation meth-
ods used to improve the sampling of lower-energy configurations are discussed. In
particular, this chapter introduces the multicanonical sampling, Tsallis ensemble,
Swarm particle intelligence molecular dynamics, and replica exchange.

This book is aimed to graduate students and research scientists working in the
fields of theoretical and computational biophysics, physics, and chemistry. Also,
the book can be used by graduate students of other branches, such as applied
mathematics, computer sciences, and bioinformatics.

Skopje, North Macedonia Hiqmet Kamberaj
April 2019
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Chapter 1
Principles of Classical Mechanics

In this chapter, we will present some important concepts of classical mechanics.
For further reading about the following discussion on classical mechanics, one

should consider the book by Goldstein (2002).
Although Newton’s equations of motion are often used as a start to understanding

the basis of molecular dynamics method presented in the next chapters, many other
advanced simulation techniques use the Lagrangian and Hamiltonian formalism of
classical mechanics.

1.1 Mechanics of the System of Particles

The system consists of N particles under the external forces, F(e)
i , acting on the

particle i, and internal forces, Fj i , acting on every particle i due to any other particle
j in the system. Newton’s second law gives the equations of motion for this system
as:

N∑

j=1 �=i

(
Fj i + F(e)

i

)
= ṗi , i = 1, 2, · · · , N (1.1)

where pi is the i-th particle momentum:

ṗi = mi

d2ri
dt2

The sum on Eq. (1.1) runs over all particle of system, excluding the i-th particle.
The forces Fj i , based on the third law of Newton, are given as

Fj i = −Fij
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2 1 Principles of Classical Mechanics

Fig. 1.1 The center of mass
of a system of particles

By summing up over all particles, Eq. (1.1) takes the form:

N∑

i=1

mi

d2ri
dt2 =

N∑

i=1

⎛

⎝
N∑

j=1(j �=i)

Fj i + F(e)
i

⎞

⎠ (1.2)

since Fj i +Fij = 0. Determining the center of mass of system as (see also Fig. 1.1)

R =
∑N

i=1 miri∑N
i=1 mi

(1.3)

then, the second derivative of R vector with respect to time is given as:

d2R
dt2 =

∑N
i=1 mi

d2ri
dt2

∑N
i=1 mi

(1.4)

Thus, Eq. (1.2) takes the form:

M
d2R
dt2

= F(e) (1.5)

Here, M gives the total mass of the system:

M =
N∑

i=1

mi,

and F(e) is the total external force acting on every particle of system:

F(e) =
N∑

i=1

F(e)
i .
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For example, consider a system of N charged particles, each with charge qi ,
interacting with each other via the Coulomb forces:

| Fij |=| Fj i |= qiqj

4πε0r
2
ij

where rij is the distance between the particles i and j and ε0 is the permittivity of
free space. Assume this system is placed in a uniform external electrical field E,
which is taken to be parallel with z-axis. The external force acting on each charge
qi is given as

F(e)
i = qiE

Then, the equation of motion of the center of the mass of system becomes

M
d2R
dt2

= F(e) =
N∑

i=1

qiE

Projections along the x, y and z axis, respectively, give:

M
d2X

dt2 = 0 (1.6)

M
d2Y

dt2
= 0 (1.7)

M
d2Z

dt2 = E

N∑

i=1

qi (1.8)

where R = (X, Y,Z). It can be seen that motions along x and y axes are without
acceleration, on the other hand, the motion along z axis is with constant acceleration.

Moreover, if the system is neutral (i.e.
∑N

i=1 qi = 0) or E = 0, then

M
d2R
dt2 = 0

hence, the center of mass is either at rest or moving with constant velocity.
Therefore, in general, we can say that if the total external force acting on the

system is zero, then the center of mass is either at rest or moving with constant
velocity. That is often the case of studying the dynamics of a system of N particles
interacting via two bodies pair-wise potential energy function with no external
forces. If we determine initially, t = 0, that the center of mass is at rest, then it
remains so during the entire time of investigating the dynamics.
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Denoting the total linear momentum of the system by

P =
N∑

i=1

mi

dri
dt

= M
dR
dt

(1.9)

where V = dR/dt is the center of mass velocity, then Eq. (1.5) can be written as

dP
dt

= F(e) (1.10)

Eq. (1.10) can also be stated as the Conservation Law for Linear Momentum for a
system of particles:

If the net external force acting on a system of particles is zero, the total linear momentum
is conserved.

The angular momentum of the system is given by

L =
N∑

i=1

ri × pi (1.11)

The moment of force or torque is defined as

T = dL
dt

=
N∑

i=1

(ṙi × pi + ri × ṗi ) (1.12)

=
N∑

i=1

ri × ṗi

=
N∑

i=1

ri × F(e)
i +

N∑

i=1

N∑

j=1 �=i

ri × Fj i

=
N∑

i=1

ri × F(e)
i

since the following two terms vanish:

ṙi × pi = 0;
N∑

i=1

N∑

j=1 �=i

ri × Fj i = 0

Thus, the time derivative of the angular momentum, L, equals the moment of the
external force about a given point. That can also be formulated as the Conservation
Law for Total Angular Momentum:

The angular momentum L is constant in time if the external torque is zero.
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Consider a linear transformation on the particle coordinates as

r′i = ri + �

where � is a constant vector. The following transformation of the angular momentum
of the system of particles occurs:

L′ =
N∑

i=1

r′i × pi (1.13)

=
N∑

i=1

[ri × pi + � × pi]

= L +
N∑

i=1

� × pi

= L + � × P

Thus, the total angular momentum on the new coordinates is the angular momentum
on the old coordinates, plus the angular momentum of the vector �. Only if total
linear momentum of system is fixed to zero, then

L′ = L

The momentum of the force on the new coordinates is

T′ =
N∑

i=1

r′i × ṗi (1.14)

=
N∑

i=1

[ri × ṗi + � × ṗi]

= T +
N∑

i=1

� × ṗi

= T + � × dP
dt

It can be seen that the momentum of force is conserved only if the total linear
momentum of system is a conserved quantity: dP/dt = 0.

Such transformations could correspond to, for example, the position of particles
with respect to the center of mass of the system. Or, transformations of the
coordinates in a system with periodic boundary conditions.
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Let calculate the work done by all forces in moving the system from initial
configuration 1 to a final configuration 2:

W12 =
N∑

i=1

2∫

1

Fi · dsi (1.15)

=
N∑

i=1

2∫

1

Fi · dsi
dt

dt

=
N∑

i=1

2∫

1

mi v̇i · vidt

=
N∑

i=1

2∫

1

d(
miv

2
i

2
)

= T2 − T1

where

T =
N∑

i=1

miv
2
i

2

is the kinetic energy of the system. Equation (1.15) represents the work-kinetic
energy law:

The work done by all forces, W12, in moving the system from the configuration 1 to a
configuration 2 equals the increase in kinetic energy, ΔT = T2 − T1.

On the other hand,

W12 =
N∑

i=1

2∫

1

Fi · dsi (1.16)

=
N∑

i=1

2∫

1

⎡

⎣F(e)
i +

N∑

j=1 �=i

Fj i

⎤

⎦ · dsi

Assuming that the external and internal forces are conservative, hence they are
derivative of some potential function V of coordinates. Thus,

F(e)
i = −∇iV
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Fig. 1.2 The displacement of
the particle i of the system
due to the external force

and then the first term in Eq. (1.16) can be written as:

N∑

i=1

2∫

1

F(e)
i · dsi =

N∑

i=1

2∫

1

(−∇iV ) · dsi = −
[

N∑

i=1

Vi

]2

1

(1.17)

where ∇i = ∂/∂ri and dsi ≈ dri (see Fig. 1.2).
Furthermore, the mutual forces between two particles i and j can also be

obtained from a potential function Vij of the distance between the two particles
| ri − rj |. For example, the force on the particle i due to particle j is:

Fj i = −∇iVij (| ri − rj |)

which satisfies the law of action and reaction (Newton’s third law):

Fj i = −∇iVij (| ri − rj |) = +∇jVij (| ri − rj |) = −Fij

where Fij is the force acting on the particle j due to particle i. Furthermore, it can
be written that

∇iVij (| ri − rj |) = ∂ | ri − rj |
∂ri

∂Vij (| ri − rj |)
∂ | ri − rj | = (ri − rj )f

where f is a scalar function of only the distance | ri − rj |, given as:

f
(| ri − rj |

) = 1

| ri − rj |
∂V (| ri − rj |)
∂ | ri − rj |

This indicates that the forces Fij (or Fj i) lie along the direction connecting the two
particles.

Note that, if Vij will also depend on other difference vectors associated with the
two particles, such as velocities, then the forces would still be equal and opposite,
but not necessarily lie along the direction between them.
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Equation (1.16) can be written as

W12 = −
[

N∑

i=1

Vi

]2

1

+
N∑

i=1

N∑

j=1 �=i

2∫

1

(−∇iVij ) · dsi (1.18)

= −
[

N∑

i=1

Vi

]2

1

+
N−1∑

i=1

N∑

j=i+1

2∫

1

−(∇iVij · dsi + ∇jVij · dsj )

= −
[

N∑

i=1

Vi

]2

1

+
N−1∑

i=1

N∑

j=i+1

−
2∫

1

(∇ij Vij · dsi −∇ij Vij · dsj )

= −
[

N∑

i=1

Vi

]2

1

+
N−1∑

i=1

N∑

j=i+1

−
2∫

1

(dsi − dsj ) · ∇ij Vij

= −
[

N∑

i=1

Vi

]2

1

+
N−1∑

i=1

N∑

j=i+1

−
2∫

1

drij · ∇ij Vij

= −
[

N∑

i=1

Vi

]2

1

−
⎡

⎣
N−1∑

i=1

N∑

j=i+1

Vij

⎤

⎦
2

1

= −
⎡

⎣
N∑

i=1

Vi +
N−1∑

i=1

N∑

j=i+1

Vij

⎤

⎦
2

1

where ∇ij represents

∇ij ≡ ∂

∂rij

and drij ≈ dsi − dsj . Denoting the total potential energy, V , of the system as

V =
N∑

i=1

Vi +
N∑

i=1

N∑

j=i+1

Vij

we obtain the work as

W12 = −(V2 − V1) ≡ −ΔV (1.19)
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Thus, both the external and internal forces are derivative of the total potential energy
function. Equation (1.19) states that:

The work done by the conservative forces equals the negative of the change in the potential
energy associated with the forces, and the work done on a system of particles by the
conservative forces does not depend on the path taken by the particles, but the work depends
only on the particles initial and final configuration.

We can combine Eqs. (1.15) and (1.19) and obtain that

ΔT = −ΔV (1.20)

which can be stated as:

The potential energy implies the potential, or capability, of the system of particles of either
gaining kinetic energy or doing work when it is at a certain configuration at some point in
time under the influence of the conservative forces exerted on a member of a system by
other members of the system.

Using Eq. (1.20), we obtain the Conservation Law of Energy:

T1 + V1 = T2 + V2

which states that:

The total energy of the system of particles in the configuration 1 and configuration 2 are
equal.

1.2 Generalized Coordinates for Unconstrained Systems

Here, we will discuss the formulation of a conservative unconstrained system in
generalized coordinates. For that, consider n generalized coordinates qj , which
determine the system of the 3N Cartesian coordinates ri :

ri = ri (q1, · · · , qn, t)

where it is assumed that ri depends explicitly on time t . This expression represents a
relationship between different descriptions of the same point in configuration space.
Furthermore, the functions ri (q1, · · · , qn, t) are independent of the motion of any
particle. We also assume that ri and qj are each a complete set of coordinates for
the space, such that qj are also functions of ri and t :

qj = qj (r1, · · · , rN, t) ,

where we have assumed an explicit dependence on time t .
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Let us introduce {xk} the 3N Cartesian coordinates of the N 3-dimensional
vectors ri :

{x1, x2, · · · , x3N } = {x1, y1, z1, · · · , xN , yN, zN }

We also consider a small change in the coordinates of a particle in configuration
space, which could be a change over a small time interval dt or a “virtual” change
between the particles current position and the position it may be under slightly
different circumstances, and describe it by the set of {δxk}3Nk=1 or {δqj }nj=1. If we
consider them to be the virtual changes at the same time, these are related by the
chain rule as:

δxk =
n∑

j=1

∂xk

∂qj
δqj , (1.21)

δqj =
3N∑

k=1

∂qj

∂xk
δxk , (for δt = 0) .

In the case of the variations where δt �= 0, a more general form can be obtained:

δxk =
n∑

j=1

∂xk

∂qj
δqj + ∂xk

∂t
δt , (1.22)

δqj =
3N∑

k=1

∂qj

∂xk
δxk + ∂qj

∂t
δt , (for δt �= 0) .

A virtual displacement, with δt = 0, is the kind of variation needed to determine
the forces described by a potential. Hence, the force is

Fk = −∂U(x1, · · · , x3N)

∂xk
= −

n∑

j=1

∂U

∂qj

∂qj

∂xk
=

n∑

j=1

∂qj

∂xk
Qj (1.23)

where

Qj = − ∂U

∂qj
(1.24)

is the so-called generalized force, which can also be written as

Qj = − ∂U

∂qj
(1.25)
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Fig. 1.3 The simple
pendulum: A dimensionless
mass m is connected to a
non-extendable chord of
length L. The position of
mass m can be represented
either by the Cartesian
coordinates (x, y) or angle θ

at any moment of the time t

= −
3N∑

k=1

∂U

∂xk

∂xk

∂qj

=
3N∑

k=1

Fk

∂xk

∂qj

In general, the generalized forces depend explicitly on time t , in contrast to
conservative forces, and hence they are not conservative. It is important to mention
that the definition of the generalized forces in Eq. (1.25) holds even if the Cartesian
forces Fk are not described by a potential.

The generalized coordinates qk do not necessary have units of the distance. For
example, qk may be an angle, such as in the case of the simple pendulum shown in
Fig. 1.3. The corresponding component of the generalized force will have the units
of energy, and it might be considered as a torque rather than a force.

The potential can be considered as a function of the generalized coordinates using
the following relation:

Ũ (q1, · · · , qn, t) = U(x1(q1, · · · , qn), · · · , x3N(q1, · · · , qn), t) ,

and the generalized forces are given as derivative of the potential with respect to
the corresponding generalized coordinate just as for ordinary Cartesian coordinates.
For the entire system, the kinetic energy can be written as:

T = 1

2

N∑

i=1

mi ṙ2
i =

1

2

3N∑

j=1

mj ẋ
2
j ,

where mj (for j = 1, 2, · · · , 3N ) are not exactly independent, considering that
a particle has the same mass in all three directions. On the other hand, from the
definition of velocity at time t , we obtain, for every j = 1, 2, · · · , 3N , that
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ẋj = lim
Δt→0

Δxj

Δt
= dxj

dt
(1.26)

=
n∑

k=1

(
∂xj

∂qk

)

qi �=k,t

dqk

dt
+

(
∂xj

∂t

)

q1,··· ,qn

=
n∑

k=1

(
∂xj

∂qk

)

qi �=k,t

q̇k +
(
∂xj

∂t

)

q1,··· ,qn

where (· · · )qi �=k,t
means that t and q’s other than qk are held fixed, and the last term

is due to the time dependence of the coordinates xi(q1, · · · , qn, t) even for fixed
values of qi for i = 1, 2, · · · , n.

Substituting this expression into the one for kinetic energy, we obtain that

T = 1

2

∑

j,k,l

mj

(
∂xj

∂qk

∂xj

∂ql

)

qi �=k,l

q̇kq̇l (1.27)

+
∑

j,k

mj

(
∂xj

∂qk
q̇k

∂xj

∂t

)

qi �=k

+ 1

2

∑

j

mj

[(
∂xj

∂t

)

q1,··· ,qn

]2

.

The first term arises if the relation between x and q is time independent. The second
and the third terms are the sources of the ṙ · (ω×r) and (ω×r)2 terms in the kinetic
energy if the rotation of coordinate systems is considered, with ω being the angular
velocity vector.

Equation (1.27) indicates that the kinetic energy as a function of the generalized
coordinates and their velocities has a much more complicated expression compare
to its form as a function of the Cartesian inertial coordinates, in which it is merely
a diagonal quadratic functional form in the velocities, and it is independent on
coordinates. On the other hand, in generalized coordinates, it is quadratic but not
homogeneous in velocities (because it involves quadratic and lower order terms in
the velocities), and with an arbitrary dependence on the coordinates.

Note that a time independent transformation of the coordinates will not in general
avoid a dependence of the kinetic energy from the generalized coordinates. In
addition, the quadratic form in the velocities may also include the off-diagonal
terms. In the case of the time-independent situation, it can be written that

T = 1

2

∑

k,l

Mkl (q1, · · · , qn) q̇kq̇l , (1.28)
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with

Mkl (q1, · · · , qn) =
∑

j

mj

(
∂xj

∂qk

∂xj

∂ql

)

qi �=k,l

,

where Mkl is known as the mass matrix, and is always symmetric:

Mkl (q1, · · · , qn) = Mlk (q1, · · · , qn)
However, it is not necessary diagonal or coordinate independent.

1.3 Phase Space

By definition, the set of all possible configurations, r, in space visited at any time
t is called trajectory. If the trajectory of the system in configuration space, r(t), is
known, the velocity as a function of time, v(t), is also determined as

v(t) = dr(t)
dt

Furthermore, since the mass of the particle is a constant quantity, the momentum

p(t) = m
dr(t)
dt

contains the same information as the velocity. If we consider momentum p simply a
function of time t , p(t), it does not give any information beyond the one contained
in the trajectory. However, both r and p, at any given time, can provide a complete
set of initial conditions, which r alone does not provide.

The phase space is the set of possible positions and momenta for the system
at some instant of time. Equivalently, it is the set of possible motions obeying the
equations of motion, solved for a set of possible initial conditions. Note that as each
initial conditions generate a unique trajectory of the system, there is an isomorphism
between initial conditions and allowed trajectories. For a single particle in Cartesian
coordinates, there are six coordinates in the phase space characterizing this particle:
three components of r and three of p. Thus, the system is represented by a point in
this space at any moment, t , called the phase point, and that point moves with time
according to the physical laws governing the dynamics of the system, for example,
Newton’s second law:

dr
dt

= p
m

, (1.29)

dp
dt

= F(r,p, t) .
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It can be seen that these are first-order equations, which means that the motion of
phase point representing the system in phase space is completely determined by its
position, assuming that the force function is a well defined continuous function of
its arguments. That is to be distinguished from the trajectory in configuration space,
which is determined by both the initial position and its time derivative.

1.4 Dynamical Systems

The phase space of a single particle is represented by its coordinates r and momenta
p, which from a mathematical point of view together give the coordinates of a phase
point in phase space. This phase point is characterized by a six-dimensional vector
for a single particle

η = (x, y, z, px, py, pz)

A phase point moves through the phase space based on the physical laws, which
determine at each point a velocity function of that phase point given as:

dη

dt
= V(η, t) , (1.30)

This generalized form of the velocity contains two components. The first component
is the usual velocity, while the other component represents the rate change of the
momentum, i.e. the force. As the phase point moves in space, it traces a path in
phase space, which is called the trajectory that forms a curve in phase space.

For a system of N particles in three dimensions, the complete set of initial
conditions requires 3N spatial coordinates

(x1, y1, z1, x2, y2, z2, · · · , xN , yN, zN)

and 3N momenta

(
px1, py1, pz1, px2, py2, pz2, · · · , pxN , pyN , pzN

)

In this case, the phase space is represented by 6N degrees of freedom, d = 6N .
A system represented by a finite number of particles can use the first-order

ordinary differential equation, Eq. (1.30), to describe its dynamics. In general, the
complexity of this equation depends on the dimensions of the variable η and the
form of the velocity function V(η, t). There are other systems, besides Newtonian
dynamics, with dynamics governed by Eq. (1.30), with a suitable velocity function,
such as Nosé-Hoover dynamics. All these systems are known as dynamical systems.
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The order d of the differential equation for η in Eq. (1.30) is called the order of
dynamical system. Note that a differential equation of order d in one independent
variable may always equivalently be represented as d first-order differential equa-
tions. The space covered by these dependent variables is often called the phase space
of the dynamical system. An even-order system can also characterize Newtonian
systems because each spatial coordinate is paired with a momentum. For N particles
unconstrained in three dimensions, the order of the dynamical system is d = 6N .
That also is the case of the constrained Newtonian systems, because of the existence
of pairs of coordinates and their conjugated momenta, which gives a restricting
structure, called the symplectic structure, on phase space. If the force function does
not depend explicitly on time, then the system is called autonomous. The velocity
function has no explicit dependence on time, V = V(η).

The paths taken by possible physical motions through the phase space of
an autonomous system have an important property. Its initial velocity function
completely determines the change on the rate and direction of a phase point from its
initial point. Therefore, if the system returns to the same initial point, then it moves
away from that point along the same path as it did previously. That is if the system at
time T returns to a point in phase space that it was at time t = 0, then its subsequent
motion must be just as it was, that is

η(T + t) = η(t)

In this case, the motion is called periodic with period T . That also implies that the
trajectory of an object through phase space must be non-intersecting.

In the non-autonomous case, the force is explicitly depending on time t , V =
V(η, t). In this case, we can think of an extended phase space, a 6N+1 dimensional
space with coordinates (η, t).

1.5 Lagrange Equations

In this section, we will consider a new formulation of Newtonian mechanics, the so-
called Lagrangian mechanics, which naturally associates with configuration space,
extended by time.

Lagrange method is, in general, an approach of treating dynamics in terms of
generalized coordinates for configuration space.

The Lagrange’s equation is derived as a simple change of coordinates in an
unconstrained system, which is evolving according to Newton’s laws with forces
given by the gradient of some potential energy function. Note that the Lagrangian
mechanics is also used to treat the systems under some constraints. Therefore, we
are going to extend the formalism to this more general situation.
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1.5.1 Lagrangian for Unconstrained Systems

For a system of N particles characterized by Cartesian coordinates r1, · · · , rN
subject to conservative forces described by a potential U(r1, · · · , rN), the equations
of motion in inertial Cartesian coordinates can be written

mi r̈i = Fi , (1.31)

where

Fi = −∂U(r1, · · · , rN)

∂ri
≡ −∇iU(r1, · · · , rN)

and the left hand side is determined by the kinetic energy function

T (p1, p2, · · · , pN) =
N∑

i=1

mi ṙ2
i

2
=

N∑

i=1

p2
i

2mi

as the time derivative of the momentum:

mi r̈i = dpi

dt

with

pi = ∂T

∂ ṙi
,

Therefore, Eq. (1.31) can also be written as:

d

dt

(
∂T

∂ ṙi

)
= −∂U

∂ri
(1.32)

Since T is a function of only momentum p1, · · · ,pN and it is independent of the
coordinates ri and U is independent of pi , the function L = T − U , which is the
well known Lagrangian function, can be introduced, where L is a function of both
the coordinates and their velocities. Then, from Eq. (1.32) we can obtain:

d

dt

(
∂(T − U)

∂ ṙi

)
= ∂(T − U)

∂ri
(1.33)

or,

d

dt

(
∂L

∂ ṙi

)
− ∂L

∂ri
= 0 , (1.34)

which is known as the Lagrangian’s equation.
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This equation can be projected along each degrees of freedom Cartesian coordi-
nate, xi , for i = 1, 2, · · · , f as:

d

dt

(
∂L

∂ẋi

)
− ∂L

∂xi
= 0 (1.35)

Here, f denotes the number of degrees of freedom.
The equation can often be generalized to any arbitrary coordinates qi for i =

1, · · · , f , as it will be shown in the following. Let {qj } be the set of generalized
coordinates, which parameterize the coordinate space, such that each point may be
described by {qj }fj=1 or {xi}fi=1, and therefore, each set may be considered as a
function of the other set and time t as the following:

qj = qj (x1, · · · , xf , t) (1.36)

xi = xi(q1, · · · , qf , t) .

Using the chain rule

∂L

∂ẋi
=

∑

j

∂L

∂qj

∂qj

∂ẋi
+

∑

j

∂L

∂q̇j

∂q̇j

∂ẋi
. (1.37)

Since qj does not depend on ẋi (see Eq. (1.36)), the first term vanishes, and we get:

∂L

∂ẋi
=

∑

j

∂L

∂q̇j

∂q̇j

∂ẋi
. (1.38)

Using Eq. (1.36) and the chain rule, we obtain:

q̇j =
∑

k

∂qj

∂xk
ẋk + ∂qj

∂t
(1.39)

By taking the partial derivative with respect to ẋi , we obtain

∂q̇j

∂ẋi
=

∑

k

∂qj

∂xk

∂ẋk

∂ẋi
+ ∂

∂ẋi

∂qj

∂t
(1.40)

=
∑

k

∂qj

∂xk
δik + ∂

∂t

∂qj

∂ẋi

= ∂qj

∂xi

where δik is the Kronecker number and
∂qj

∂ẋi
= 0.
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Substituting Eq. (1.40) into Eq. (1.38), we obtain:

∂L

∂ẋi
=

∑

j

∂L

∂q̇j

∂qj

∂xi
(1.41)

Lagrange’s equation involves the time derivative of the above equation, which is the
derivative along the path system takes as it moves through configuration space. It is
also called the stream derivative, as in the fluid mechanics, giving the rate change of
some property of a fixed element of the fluid defined throughout the fluid, f (r, t),
as it flows as a whole. It represents the total derivative to indicate that the motion
is followed rather than evaluating the rate of change at any specified point in space
using the partial derivative.

The function f (x, t) of extended configuration space has a total time derivative
given by

df

dt
=

∑

j

∂f

∂xj
ẋj + ∂f

∂t
(1.42)

Using the Leibnitz’s rule on Eq. (1.41) and using the above relation in the second
term, it can be found that

d

dt

∂L

∂ẋi
=

∑

j

(
d

dt

∂L

∂q̇j

)
∂qj

∂xi
+

∑

j

∂L

∂q̇j

(
∑

k

∂2qj

∂xi∂xk
ẋk + ∂2qj

∂xi∂t

)
(1.43)

Using the chain rule again:

∂L

∂xi
=

∑

j

∂L

∂qj

∂qj

∂xi
+

∑

j

∂L

∂q̇j

∂q̇j

∂xi
(1.44)

where the last term
∂q̇j

∂xi
is, in general, different from zero, since q̇j , in general,

depends on both the coordinates and velocities.
Taking the derivative with respect to xi of the expression in Eq. (1.39) gives

∂q̇j

∂xi
=

∑

k

∂2qj

∂xi∂xk
ẋk + ∂2qj

∂xi∂t
(1.45)

Hence,

∂L

∂xi
=

∑

j

∂L

∂qj

∂qj

∂xi
+

∑

j

∂L

∂q̇j

(
∑

k

∂2qj

∂xi∂xk
ẋk + ∂2qj

∂xi∂t

)
. (1.46)
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Lagrange’s equation in Cartesian coordinates indicates that the left hand sides of
Eqs. (1.43) and (1.46) are equal, hence by subtracting them the second terms cancel,
and hence

0 =
∑

j

(
d

dt

∂L

∂q̇j
− ∂L

∂qj

)
∂qj

∂xi
. (1.47)

The matrix ∂qj /∂xi , is non-singular, because it has ∂xi/∂qj �= 0 as its inverse,
therefore, the Lagrange’s Equation in generalized coordinates can be derived:

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
= 0 (1.48)

where j = 1, 2, · · · , f . Thus, Lagrange’s equations are invariant in form under the
transformation from the Cartesian to generalized coordinates, used to represent the
configuration of a system. It is primarily for this reason that the Lagrangian function
in this particular and peculiar combination form of kinetic energy and potential
energy is useful. Note that it is implicitly assumed the Lagrangian itself transformed
like a scalar, in that its value at a given physical phase point in configuration
space is independent of the choice of generalized coordinates that describe the
point. The change of coordinates given by expression in Eq. (1.36) is called a point
transformation.

1.5.2 Lagrangian for Constrained Systems

Now, the case of the constrained systems and non-conservative forces will
be considered. The holonomic constraints are expressed as k real functions
φα(r1, · · · , rN, t) = 0, for α = 1, 2, · · · , k, which are “enforced” by constraint
forces FC

i on each particle i. In general, there may be other forces, which are
called FD

i that have a dynamical effect, which are possibly known functions of the
configuration and time but not necessarily through the potential. In each of these
cases, the full configuration space is �3N , but the constraints restrict the motion to
only an allowed subspace of the entire extended configuration space. It will also be
assumed that the constraint forces, in general, satisfy the restriction no net virtual
work is done by the forces of constraint for any possible virtual displacement.

From Newton’s second law,

ṗi = Fi = FC
i + FD

i .

By multiplying by an arbitrary virtual displacement, δri , summing up over all the
particles, and rearranging the equation we obtain:

∑

i

(
FD
i − ṗi

)
· δri = −

∑

i

FC
i · δri = 0
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where the first equality would be true even if δri did not satisfy the constraints, but
the second requires δri to be an allowed virtual displacement. Thus, we derived the
so-called D’Alembert’s Principle:

∑

i

(
FD
i − ṗi

)
· δri = 0

This equation determines the motion on the constrained subspace and does not
involve the unspecified forces of constraint FC .

The constrained subspace is characterized by the vector

ri = ri (q1, q2, · · · , qf , t)

for i = 1, 2, · · · , N , which are known functions of f independent q1, q2, · · · , qf
generalized coordinates. Since there are k holonomic constraints, and the number of
degrees of freedom of unconstrained system is 3N , then f = 3N − k. Furthermore,

Δri =
∑

j

∂ri
∂qj

Δqj + ∂ri
∂t

Δt . (1.49)

Dividing by Δt both sides of this equation and taking the limit when Δt → 0, we
get:

vi =
∑

j

∂ri
∂qj

q̇j + ∂ri
∂t

, (1.50)

where vi = limΔt→0 Δri/Δt is the particle velocity. On the other hand, for the
virtual displacement, Δt = 0, it can be written that

δri =
∑

j

∂ri
∂qj

δqj .

Differentiating Eq. (1.50) with respect to q̇j , it can be found:

∂vi
∂q̇j

= ∂ri
∂qj

,

and differentiating Eq. (1.50) with respect to qj , yield

∂vi
∂qj

=
∑

k

∂2ri
∂qj ∂qk

q̇k + ∂2ri
∂qj ∂t

= d

dt

∂ri
∂qj

,
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where Eq. (1.42) is used. The first term in Eq. (1.50) (D’Alembert’s Principle) is

∑

i

Fi · δri =
∑

j

∑

i

Fi · ∂ri
∂qj

δqj =
∑

j

Qj · δqj . (1.51)

The generalized force Qj has the same form as in the unconstrained case (see
Eq. (1.24)), but there are only as many of them as there are unconstrained degrees
of freedom.

The second term in Eq. (1.50) can be expressed as the following:

∑

i

ṗi · δri =
∑

i

dpi

dt

∑

j

∂ri
∂qj

δqj (1.52)

=
∑

j

d

dt

(
∑

i

pi · ∂ri
∂qj

)
δqj −

∑

i,j

pi ·
(

d

dt

∂ri
∂qj

)
δqj

=
∑

j

d

dt

(
∑

i

pi · ∂vi
∂q̇j

)
δqj −

∑

i,j

pi · ∂vi
∂qj

δqj

=
∑

j

[
d

dt

(
∑

i

mivi · ∂vi
∂q̇j

)
−

∑

i

mivi · ∂vi
∂qj

]
δqj

=
∑

j

[
d

dt

∂T

∂q̇j
− ∂T

∂qj

]
δqj ,

where T is the kinetic energy. Substituting this equation into the expression found
for the D’Alembert’s Principle, Eq. (1.51), we get

∑

j

[
d

dt

∂T

∂q̇j
− ∂T

∂qj
−Qj

]
δqj = 0 .

It was assumed a holonomic system and qj , for j = 1, 2, · · · , f , are independent,
therefore, this equation holds for arbitrary virtual displacements δqj , and hence

d

dt

∂T

∂q̇j
− ∂T

∂qj
−Qj = 0 . (1.53)

In the cases when all the forces are conservative, we can write

Fi = −∇iU(r1, r2, · · · , rN, t) ,
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or

Qj = −
∑

i

∂ri
∂qj

· ∇iU = −
(
∂Ũ(q1, · · · , qf , t)

∂qj

)

t

. (1.54)

Notice that Qj depends only on the value of U on the constrained surface. Since U

is independent of q̇i , then

0 = d

dt

∂T

∂q̇j
− ∂T

∂qj
+ ∂U

∂qj
= d

dt

∂(T − U)

∂q̇j
− ∂(T − U)

∂qj

or

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
= 0 (1.55)

for j = 1, 2, · · · , f . This is Lagrange’s equation, which is derived in the more
general case of constrained systems.

1.6 Hamilton’s Principle

The configuration space of a system at any instant of time t can be represented
by the generalized coordinates qi(t) for i = 1, 2 · · · , f . The space characterized
by the vector (q1, q2, · · · , qf ) is called configuration space. The trajectory or
the motion of the point in configuration space gives the time evolution of the
system as a function of time, specified by the time dependence of the vector(
q1(t), q2(t), · · · , qf (t)

)
.

We can think that a system can take different paths for going from the state 1
at time t1 to the state 2 at some other time t2, which may or may not obey to the
Newton’s second law. However, only those paths for which qi(t) (i = 1, 2, · · · , f )
are differentiable will be considered. Along such paths, an action can be defined as
the following:

I =
∫ t2

t1

L (q(t), q̇(t), t) dt (1.56)

The action depends not only on the starting and ending points, respectively, q(t1)
and q(t2), but its value also depends on the path, in contrast to what we know about
the work of the conservative forces on a system moving in configuration space.

This action is also known as the Hamilton’s principle, which states that the actual
motion of the particle from q(t1) = qi to q(t2) = qf is along a path q(t) for which
the action is stationary. That means, for any small deviation of the path from the



1.6 Hamilton’s Principle 23

actual one, keeping the initial and final configurations fixed, the variation of the
action vanishes to the first order in this deviation.

In general, to find out the stationary points of a differentiable function of one
variable, we first differentiate it, and then solve the equation found by setting the
derivative to zero. Here, let f be a differentiable function of several variables xi ,
then the first-order variation of the function is given by

Δf =
∑

i

(xi − x0i )

(
∂f

∂xi

)

x0

Equalizing Δf = 0, then x0 is a stationary point (x0 �= xi), if

(
∂f

∂xi

)

x0

= 0

for every i.
Therefore, let’s consider a change q(t) → q(t) + δq(t), then the derivative will

vary by

δq̇ = δ

[
dq(t)

dt

]
= d

dt
[δq(t)] ,

and the functional I will vary by

δI =
∫ t2

t1

(
∂L

∂q
δq + ∂L

∂q̇
δq̇

)
dt (1.57)

Using the following relation:

d

dt

(
∂L

∂q̇
δq

)
= d

dt

(
∂L

∂q̇

)
δq + ∂L

∂q̇
δq̇

we obtain

∂L

∂q̇
δq̇ = d

dt

(
∂L

∂q̇
δq

)
− d

dt

(
∂L

∂q̇

)
δq (1.58)

Replacing Eq. (1.58) into Eq. (1.57), we obtain:

δI =
∫ t2

t1

(
∂L

∂q
δq + d

dt

(
∂L

∂q̇
δq

)
− d

dt

(
∂L

∂q̇

)
δq

)
dt (1.59)

=
(
∂L

∂q̇
δq

)2

1
+

∫ t2

t1

[
∂L

∂q
− d

dt

∂L

∂q̇

]
δqdt ,
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The first term in Eq. (1.59) is zero, because the boundary terms which have a factor
of δq at the initial or final point from Hamilton’ principle are hold at q1 and q2 fixed.
Therefore, the functional is stationary, i.e. δI = 0, if and only if

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0 (1.60)

for t ∈ (t1, t2). As it can be seen, Eq. (1.60) is the Lagrangian equation derived in
the previous section.

1.7 Hamiltonian Method

Lagrange’s equations do not form a dynamical system in the way we discussed
in Sect. 1.4, because they implicitly contain second-order derivatives, q̈. However,
there exists the possibility to derive a system of the first-order equations from the
second-order one.1 This is done by doubling the dimensions of the phase space
of time dependent variables, introducing the so-called generalized velocities u as
independent of generalized coordinates. The dynamical system then becomes

q̇ = u (1.61)

u̇ = q̈(q,u, t)

with a phase space dimension of 2f .
Assuming that the Lagrangian is a function of coordinates, velocities and time,

as such L = L(q,u, t), then

∂L

∂ui
≡ ∂L

∂q̇i
= f (q, q̇, t)

Then, we can evaluate the following derivative:

d

dt

(
∂L

∂q̇i

)
= d

dt
f (q, q̇, t) (1.62)

=
f∑

j=1

∂f

∂qj

dqj

dt
+

f∑

j=1

∂f

∂q̇j

dq̇j

dt
+ ∂f

∂t

=
f∑

j=1

∂2L

∂q̇i∂qj
q̇j +

f∑

j=1

∂2L

∂q̇i∂q̇j
q̈j + ∂2L

∂q̇i∂t

1This method has been used frequently in numerical problems, because the standard numerical
integrator methods require the problem to be represented in terms of systems of the first-order
differential equations.
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By replacing this expression into Eq. (1.55), we get

f∑

j=1

∂2L

∂q̇i∂qj
q̇j +

f∑

j=1

∂2L

∂q̇i∂q̇j
q̈j + ∂2L

∂q̇i∂t
− ∂L

∂qi
= 0

Or, by determining the Hessian matrix, Hij , which is a generalized mass tensor as

Hij = ∂2L

∂q̇i∂q̇j

we get

q̈ = H−1 ·
[
∂L

∂q
− ∂2L

∂q̇∂q
q̇ − ∂2L

∂q̇∂t

]

Thus, the dynamical system is

q̇ = u (1.63)

q̈ = H−1 ·
[
∂L

∂q
− ∂2L

∂q̇∂q
q̇ − ∂2L

∂q̇∂t

]

which works for Hessian matrix H being non-singular, so that H−1 exists.

1.7.1 Hamilton Equations

In particular, we introduce a new variable

p = ∂L(q, q̇, t)
∂q̇

which is called generalized momentum canonically conjugate to q. From Eq. (1.55),
we can easily find that

ṗ = ∂L

∂q

Considering L = L(q, q̇, t), the differential of L is

dL = ∂L

∂q
· dq + ∂L

∂q̇
· dq̇ + ∂L

∂t
dt (1.64)

= ṗ · dq + p · dq̇ + ∂L

∂t
dt
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Defining the Hamiltonian H(q,p, t) as Legendre transformation of L:

H(q,p, t) = q̇ · p − L(q, q̇, t) (1.65)

We can calculate the differential of H as

dH = d(q̇ · p)− dL(q, q̇, t) (1.66)

= dq̇ · p + q̇ · dp −
(

ṗ · dq + p · dq̇ + ∂L

∂t
dt

)

= q̇ · dp − ṗ · dq − ∂L

∂t
dt

On the other hand, from Eq. (1.65), H = H(q,p, t), therefore, dH is equal to

dH = ∂H

∂q
· dq + ∂H

∂p
· dp + ∂H

∂t
dt (1.67)

By comparing Eq. (1.66) and Eq. (1.67), we get

ṗ = −∂H

∂q
(1.68)

q̇ = ∂H

∂p

∂H

∂t
= −∂L

∂t

For H which does not depend explicitly on time t , we get the so-called Hamilton’s
equations of motion

ṗ = −∂H

∂q
(1.69)

q̇ = ∂H

∂p

On the other hand, Hamilton’s equations of motion, Eq. (1.69), form a dynamical
system (as discussed in Sect. 1.4), where

η = (q,p)

and

V =
(
∂H

∂p
,−∂H

∂q

)
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Then, Eq. (1.69) can equivalently be written as:

η̇ = V(η)

1.8 Time Averages and Virial Theorem

The virial theorem is concerned with the time averages of some mechanical quantity
of the system. For that, consider a system of N mass points particles with positions
ri and applied forces Fi , which may also include external forces and constraints.
The equations of motions governing the dynamics are given by Eq. (1.29). Consider
the following quantity

G =
N∑

i=1

ri · pi

Taking the total time derivative of the quantity G:

dG

dt
=

N∑

i=1

ṙi · pi +
N∑

i=1

ri · ṗi (1.70)

This expression can further be simplified as

dG

dt
=

N∑

i=1

ṙi ·mi ṙi +
N∑

i=1

ri · Fi (1.71)

= 2T +
N∑

i=1

ri · Fi

Here, T denotes the kinetic energy of the system.

The time average of the derivative
dG

dt
in the interval from 0 to T , 〈dG

dt
〉t , is

obtained using Eq. (1.71) as the following:

〈dG
dt

〉t = 1

T

T∫

0

dG

dt
dt = 〈2T 〉t + 〈

N∑

i=1

ri · Fi〉t

where 〈· · · 〉t denotes the time average.
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From here, it can be found that

〈2T 〉t + 〈
N∑

i=1

ri · Fi〉t = 1

T [G(T )−G(0)] (1.72)

For the periodic motions, the coordinates will repeat after a certain time, and if
T is the period, then the right-hand side of Eq. (1.72) vanishes. That also is true for
non-periodic motions, given that all coordinates and velocities of particles remain
finite so that for G to exist an upper limit. If T is sufficiently long, then the right-
hand-side of Eq. (1.72) can be chosen to be very small since G is finite. Therefore,
in both cases, it can be written that

〈T 〉t = −1

2
〈

N∑

i=1

ri · Fi〉t (1.73)

which is known as virial theorem. The right-hand-side is known as the virial of
Clausius.

Consider the general case when forces Fi are the sum of two terms, the non-
frictional forces F′

i and frictional forces fi (which are proportional to velocity).
Hence,

Fi = F′
i + fi = F′

i − γ vi

where γ is the proportionality constant. Substituting this expression into Eq. (1.73),
we get

〈T 〉t = −1

2
〈

N∑

i=1

ri · F′
i〉t +

γ

2
〈

N∑

i=1

ri · vi〉t (1.74)

The second term vanishes, because:

〈
N∑

i=1

ri · vi〉t = 〈
N∑

i=1

ri · dri
dt

〉t

= 1

2
〈

N∑

i=1

d(ri · ri )
dt

〉t

= 1

2

N∑

i=1

〈d(ri · ri )
dt

〉t = 0
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Therefore, there is no contribution from the frictional forces and the virial depends
only on the non-frictional term F′

i :

〈T 〉t = −1

2
〈

N∑

i=1

ri · F′
i〉t (1.75)

Considering the forces are conservative, then they can be expressed as derivative
of some potential V : F′

i = −∇iV . Thus, Eq. (1.75) can be written as

〈T 〉t = 1

2
〈

N∑

i=1

ri · ∇iV 〉t (1.76)

Assuming that the potential depends on the distance between two particles only,
according to the power law:

V
(| ri − rj |

) = α | ri − rj |−n

where α is a real constant and n is an integer number.
Then, the virial theorem can be written as

〈T 〉t = α

2
〈

N∑

i=1

N∑

j=1 �=i

ri · ∇ij | ri − rj |−n〉t (1.77)

or,

〈T 〉t = −n

2
〈

N∑

i=1

N∑

j=1 �=i

V
(| ri − rj |

)〉t (1.78)

Note that using the Euler’s theorem for homogeneous functions, Eq. (1.78) holds
for every homogeneous function in | ri − rj | of V of degree n. For the special case
when n = 1, then once obtains the virial theorem in well known form:

〈T 〉t = −1

2
〈V 〉t

where

〈V 〉t = 〈
N∑

i=1

N∑

j=1 �=i

V
(| ri − rj |

)〉t
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1.9 Canonical Transformations

Consider a system where the Hamiltonian is a constant of motion. All the coordi-
nates qi are cyclic, and hence H = H(p). Using these as conditions, all conjugate
momenta pi are constant, i.e.,

pi = ci

for i = 1, 2, · · · , n.
Since the Hamiltonian is only a function of momenta and not of the time and

cyclic coordinates (because it is conserved), it can be written that

H = H(c1, c2, · · · , cn)

The Hamilton’s equation for the derivative of coordinates q̇i can be written as

q̇i = ∂H

∂ci
= αi (1.79)

where αi are functions of ci only, and hence are constant in time. Solution of
Eq. (1.79) gives

qi = αit + βi (1.80)

where βi are constants of integration, and therefore are determined from the initial
conditions:

βi = qi(0)

for i = 1, 2, · · · , n.
That corresponds to motion with constant velocity for each particle of the system,

where the relative distance between any two particles i and j of the system changes
with time according to:

qj − qi = (αj − αi) t + (βj − βi)

If the velocities of the particles are the same (i.e., αi = αj ,∀(i, j) : i �= j ),
then that would correspond to a motion where the entire system can move along
a straight line as a rigid body (i.e., the relative distances between particles do not
change with time, and they equal their initial separations, βj − βi, ∀(i, j) : i �= j )
with constant velocity of the center of mass, or the entire system can rotate about
one of the axes with constant angular velocity. Another example of such motion
could be the system of particles, such as photons, originating from different stars in
space as seen from an observer on the Earth. The motion of these photons is with
constant speed, and they follow separate streamlines which are curved because of
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the existence of gravitation waves in space. On the other hand, if the particles have
different velocities (i.e., αi �= αj ,∀(i, j) : i �= j ), then their separations vary
linearly with time, but the relative velocity is constant. That corresponds to a flow
motion of the particles of an ideal fluid along separate straight or curved streamlines.
Here, the kinetic energy and the linear momentum of each particle are conserved,
and hence the Hamiltonian function or total energy of the system is a constant of
motion.

The number of cyclic coordinates depends on the choice of generalized coor-
dinates. There may exist only one particular choice for each problem in which
all the coordinates are cyclic. The only remaining problem is to find this set.
The transformations considered above involve transformations from one set of
coordinates, say qi , to another set, say Qi , by a transformation of the form:

Qi = Qi(q1, · · · , qn, t), i = 1, 2, · · · , n (1.81)

For example, these transformations can be an orthogonal transformation, or the
change from Cartesian to planar polar coordinates. These transformations are
known as point transformations. In the Hamiltonian formalism, the momenta are
also independent variables, similarly to the generalized coordinates. Therefore, the
equations of transformations from the independent coordinates and momenta qi , pi

to the new set Qi , Pi can be written, for i = 1, 2, · · · , n, as

Qi = Qi(q, p, t) (1.82)

Pi = Pi(q, p, t)

which indicates that the new coordinates will be function of both, the old momenta
and coordinates.

By definition, Eq. (1.81) determines a point transformation of configuration
space, and Eq. (1.82) determines a point transformation of phase space. In Hamil-
tonian formulation, only the transformations in which the new set Q and P are
canonical coordinates show an interest. This condition is satisfied if there exist
a function H(Q, P, t) such that the equations of motion in the new set in the
Hamiltonian formalism can be written as:

Q̇i = ∂H
∂Pi

(1.83)

Ṗi = − ∂H
∂Qi

for i = 1, 2, · · · , n. Here, the function H is considered the Hamiltonian in the
new coordinate set. (Q, P ) are canonical coordinates for all mechanical systems
of the same number of degrees of freedom, and hence, these transformations
are problem-independent. The new equations, Eq. (1.83), govern the dynamics of
motion in the new momenta P and coordinates Q regardless of the form of old
Hamiltonian H .
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In order for Qi and Pi to be canonical coordinates, they have to satisfy the
modified Hamilton’s principle of the following form:

δ

t2∫

t1

(
n∑

i=1

PiQ̇i −H(Q1, · · · ,Qn, P1, · · · , Pn, t)

)
dt = 0 (1.84)

The same principle is also satisfied by the old coordinates and momenta:

δ

t2∫

t1

(
n∑

i=1

piq̇i −H(q1, · · · , qn, p1, · · · , pn, t)

)
dt = 0 (1.85)

The general form of the Hamilton’s principle provides zero variation at the
endpoints, therefore both statements given by Eqs. (1.84) and (1.85) will be satisfied
if the integrands are related to each other as:

λ

(
n∑

i=1

piq̇i −H(q1, · · · , qn, p1, · · · , pn, t)

)
(1.86)

=
n∑

i=1

PiQ̇i −H(Q1, · · · ,Qn, P1, · · · , Pn, t)+ dF

dt

where λ is a constant independent of the canonical coordinates and the time,
and F is any function of the coordinates of phase space with continuous second
derivative. This type of canonical transformation of coordinates is known as scale
transformation.

For example, consider a change in units used to measure the coordinates and
momenta, such that:

Q′
i = μqi (1.87)

P ′
i = νpi, i = 1, 2, · · · , n

where μ and ν are two scaling factors of the size of the units of coordinates and
momenta, respectively. Then, it can be seen that the Hamilton’s equations given by
Eq. (1.83) will be satisfied for a transformed Hamiltonian given as

H ′(Q′, P ′) = μνH(q, p)

On the other hand, the integrands of corresponding modified Hamilton’s principles
are related as:
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μν

(
n∑

i=1

piq̇i −H(q, p, t)

)
=

n∑

i=1

P ′
i Q̇

′
i −H ′(Q′, P ′, t)

Comparing this expression with one given by Eq. (1.86), it can be seen that λ = μν.
Here, the focus will be on these transformations of canonical coordinates for which
λ = 1. For instance, if there is some transformation of canonical coordinates

(q, p) → (Q′, P ′)

for λ �= 1, then there exists an intermediate set of canonical coordinates (Q, P )

such that

Qi = μQ′
i (1.88)

Pi = νP ′
i , i = 1, 2, · · · , n

where λ = μν.
Then, the transformations between two sets of canonical coordinates (q, p) and

(Q, P ) will satisfy Eq. (1.86) for λ = 1, that is

n∑

i=1

piq̇i −H(q, p, t) =
n∑

i=1

PiQ̇i −H(Q, P, t)+ dF

dt
(1.89)

The transformations of canonical coordinates with λ �= 1 are called extended
canonical transformations and those with λ = 1 are called canonical transforma-
tions.

If the transformations of canonical coordinates (see Eq. (1.82)) do not include
time explicitly, i.e.

Qi = Qi(q1, · · · , qn, p1, · · · , pn) (1.90)

Pi = Pi(q1, · · · , qn, p1, · · · , pn), i = 1, 2, · · · , n

they are called restricted canonical transformations.
The term dF/dt in the expression given by Eq. (1.89) contributes to the variation

of the action integral only at the endpoints. Therefore, the requirement that dF/dt

vanishes at the endpoints is satisfied if F is a function of either (q, p, t), (Q, P, t)

or any combination of the phase space coordinates, because they vanish at the
endpoints.

Expressions in Eq. (1.82) indicate that F can be expressed partly in terms of old
canonical coordinates (q, p) and partly of the new set (Q, P ), as such, it provides
a link between these two sets of canonical variables, and it is called the generating
function of the transformation. To show that, consider F is given as

F ≡ F(q,Q, t)
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Then, replacing this into expression given by Eq. (1.89), we get

n∑

i=1

piq̇i −H(q, p, t) =
n∑

i=1

PiQ̇i −H(Q, P, t)+ dF

dt
(1.91)

=
n∑

i=1

PiQ̇i −H(Q, P, t)

+ ∂F

∂t
+

n∑

i=1

∂F

∂qi
q̇i +

n∑

i=1

∂F

∂Qi

Q̇i

Because the new and old sets are separately independent, Eq. (1.91) can hold
identically only if the coefficients before q̇i and Q̇i vanish, that is:

pi = ∂F

∂qi
(1.92)

Pi = − ∂F

∂Qi

for i = 1, 2, · · · , n.
Therefore,

H = H + ∂F

∂t
(1.93)

In Eq. (1.92) are n relations defining pi as a function of qi , Qi , and t . Assume
that the inverse of the function exists, then they can be solved to determine n

other relations of Qi in terms of qi , pi , and t , which give the first half of the
transformations given by Eq. (1.82). After solving the relationship between Qi and
the old set (q, p), they can be substituted into second expression given by Eq. (1.92)
to give in this way the n Pi expressions as functions of qi , pi and t , which form
the second half of the transformation equations in Eq. (1.92). Finally, the Eq. (1.93)
gives a relation between the new Hamiltonian and the old one, which is evaluated
in this way: first the old canonical coordinates set q and p in expression of the old
Hamiltonian H are expressed as functions of Q and P by calculating the inverses of
Eq. (1.92), then, qi and ∂F/∂t are expressed in terms of Q and P in a similar way
and the two functions are added to give H(Q, P, t).

We showed here that if a generating function F is given, then the equations of
canonical transformation can be obtained. The problem can also be inverted, that
is, given a canonical transformation, how to obtain the generating function F . For
that, first Eq. (1.82) are inverted to obtain expressions for pi and Pi as functions
of q, Q, and t . Then, the expressions in Eq. (1.92) are used by integrating them as
a set of partial differential equations to derive the expression for F providing the
transformation is canonical. This procedure will give a function F uncertain within
an arbitrary additive function of t alone, which does not affect the equations of
transformations.
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It could also happen that it is not suitable to describe the canonical transformation
by a generating function of the type F(q,Q, t). For example, consider a transfor-
mation in which pi cannot be written as functions of q, Q, and t , however they can
be functions of q, P , and t . Then, we would try to derive a generating function F ,
which is a function of the old coordinates q and the new momenta P . It can be seen
that Eq. (1.91) can be replaced by an equivalent relation involving Ṗi rather than Q̇i ,
for instance, by writing F in the following form:

F = F2(q, P, t)−
∑

i

QiPi (1.94)

Replacing this expression for F into Eq. (1.89) gives

∑

i

q̇ipi −H(q, p, t) =
∑

i

PiQ̇i −H(Q, P, t) (1.95)

+ dF2(q, P, t)

dt
−

∑

i

Q̇iPi −
∑

i

QiṖi

= −
∑

i

QiṖi −H(Q, P, t)+ dF2(q, P, t)

dt

= −
∑

i

QiṖi −H(Q, P, t)+ ∂F2(q, P, t)

∂t

+
∑

i

∂F2(q, P, t)

∂qi
q̇i +

∑

i

∂F2(q, P, t)

∂Pi

Ṗi

In order that both sides to be equal, we should have the following equations:

Qi = −∂F2(q, P, t)

∂Pi

(1.96)

pi = ∂F2(q, P, t)

∂qi

for i = 1, 2, · · · , n, with

H(Q, P, t) = H(q, p, t)+ ∂F2(q, P, t)

∂t
(1.97)

First equation of Eq. (1.96) can be solved to obtain Qi as a function of qi , pi , and t

corresponding the first half of the transformations in Eq. (1.82). The second half can
be obtained by solving Pi as functions of qi , pi , and t , using the second equation of
Eq. (1.96).
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There are four basic canonical transformations, which can be related to each other
through Legendre transformations. For example, let’s look at the transition from F1
to F2, which is equivalent to transformation from variables q, Q to q, P via the
relation

−Pi = ∂F1

∂Qi

The Legendre transformation for this change of variables is

F2(q, P, t) = F1(q,Q, t)+ PiQi

As an example, for a system with two degrees of freedom, a canonical transfor-
mation can be defined by a generating function of the form:

F ′(q1, p2, P1,Q2, t)

which can be related to F according to

F = F ′(q1, p2, P1,Q2, t)−Q1P1 + q2p2

Then, the equations representing the transformation of canonical coordinates are
obtained as the following:

p1 = ∂F ′

∂q1
, Q1 = ∂F ′

∂P1
(1.98)

q2 = −∂F ′

∂p2
, P2 = − ∂F ′

∂Q2

with

H = H + ∂F ′

∂t
(1.99)

1.9.1 The Symplectic Approach to Canonical Transformations

The matrix or symplectic formulation of the Hamilton’s equations is another method
for dealing with canonical transformations. Consider a canonical transformation
given by the following equations of transformations:

Qi = Qi(q, p) (1.100)

Pi = Pi(q, p)
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which does not change the Hamiltonian function. Consider calculating the time
derivative of Qi from Eq. (1.100):

Q̇i =
n∑

j=1

(
∂Qi

∂qj
q̇j + ∂Qi

∂pj

ṗj

)
(1.101)

=
n∑

j=1

(
∂Qi

∂qj

∂H

∂pj

− ∂Qi

∂pj

∂H

∂qj

)

From the inverses of Eq. (1.100), it can be written that

qi = qi(Q, P ) (1.102)

pi = pi(Q,P )

Therefore, the Hamiltonian function H(q, p, t) can be seen as a function of Q, P ,
and t . Then, the partial derivatives of H can be calculated as:

Q̇i = ∂H

∂Pi

=
n∑

j=1

(
∂H

∂pj

∂pj

∂Pi

+ ∂H

∂qj

∂qj

∂Pi

)
(1.103)

Comparing Eqs. (1.101) and (1.103), it can be found that

(
∂Qi

∂qj

)

q,p

=
(
∂pj

∂Pi

)

Q,P

,

(
∂Qi

∂pj

)

q,p

= −
(
∂qj

∂Pi

)

Q,P

(1.104)

The subscripts are used to indicate that Qi function of q and p and qj , pj are
functions of Q and P .

Similarly, the time derivative of Pi gives:

Ṗi =
n∑

j=1

(
∂Pi

∂qj
q̇j + ∂Pi

∂pj

ṗj

)
(1.105)

=
n∑

j=1

(
∂Pi

∂qj

∂H

∂pj

− ∂Pi

∂pj

∂H

∂qj

)

Then again, the partial derivatives of H can be calculated as:

Ṗi = − ∂H

∂Qi

= −
n∑

j=1

(
∂H

∂pj

∂pj

∂Qi

+ ∂H

∂qj

∂qj

∂Qi

)
(1.106)
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Similarly, comparing Eqs. (1.105) and (1.106), it can be found that

(
∂Pi

∂qj

)

q,p

= −
(
∂pj

∂Qi

)

Q,P

,

(
∂Pi

∂pj

)

q,p

=
(
∂qj

∂Qi

)

Q,P

(1.107)

The set of equations given by Eqs. (1.104) and (1.107) are also called the direct
conditions for a canonical transformation. The derivations of these equations can be
performed in a more elegant manner by introducing the symplectic terminology for
the Hamiltonian formalism. For that, consider Φ a column matrix with 2n elements
(qi, pi), for i = 1, 2, · · · , n:

Φ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1

q2

·
·
qn

p1

p2

·
·
pn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Then, the Hamilton’s equation can be written as

Φ̇ = J
∂H

∂Φ
(1.108)

where J is a 2n × 2n square matrix composed of four n × n zero and one matrices
as the following

J =
[

0 1
−1 0

]
(1.109)

where 0 is a n × n matrix with all elements zero, and 1 is a n × n matrix with all
entries one. The transpose of the matrix J is

J′ =
[

0 −1
1 0

]
(1.110)

such that

JJ′ = J′J = I =
[

1 0
0 1

]
(1.111)



1.9 Canonical Transformations 39

Moreover, it can be seen that

J′ = −J = J−1

and

J2 = −I

and the determinant is

| J |= +1

Now, consider ξ a column matrix with 2n elements in the new set of canonical
variables (Qi, Pi):

ξ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q1

Q2

·
·
Qn

P1

P2

·
·
Pn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Then, the canonical transformations given by Eq. (1.82) can be written as

ξ = ξ(Φ) (1.112)

The time derivatives of the new canonical variables, which will give the equations
of motion, can be found as

ξ̇i =
2n∑

j=1

∂ξi

∂Φj

Φ̇j , i = 1, 2, · · · , 2n

or in matrix form as

ξ̇ = MΦ̇ (1.113)

where M is the Jacobian matrix of the transformation with elements

Mij = ∂ξi

∂Φj
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Replacing the expression for Φ̇, it can be found that

ξ̇ = MJ
∂H

∂Φ
(1.114)

Now, consider the Hamiltonian function in terms of the new variable set, then the
derivatives with respect to the old variable set are calculated using the chain rule as:

∂H

∂Φi

=
2n∑

j=1

∂H

∂ξj

∂ξj

∂Φi

Using the matrix notation, the last equation can be written as

∂H

∂Φ
= M′ ∂H

∂ξ
(1.115)

where M′ is the transpose matrix of M. Replacing Eq. (1.115) into Eq. (1.114), we
obtain

ξ̇ = MJM′ ∂H
∂ξ

(1.116)

which are the equations of motion of the new set of variables ξ from the old
canonical set Φ.

The transformation will be called canonical if M satisfies the condition

MJM′ = J (1.117)

In such case, the equations of motion of the new variables can be written as:

ξ̇ = J
∂H

∂ξ
(1.118)

Note that the condition Eq. (1.117) is also a necessary condition for restricted
canonical transformation. Moreover, for an extended time-independent canonical
transformation, with H = λH , the condition Eq. (1.117) would be replaced by

MJM′ = λJ (1.119)

Multiplying both sides of Eq. (1.117) by the inverse of M′, we obtain

MJM′(M′)−1 = MJ = J(M′)−1 (1.120)

Multiplying the last equation by J from the left and −J from the right, we get

JM = (M′)−1J (1.121)
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where the relation J2 = −1 is used. Or, by multiplying from the left with M′ and
using M′(M′)−1 = I, we obtain

M′JM = J (1.122)

Both relations represented by Eq. (1.117) or Eq. (1.122) are known as the
symplectic condition for a canonical transformation, and the matrix M satisfying
this condition is called symplectic matrix.

It is important to note that for canonical transformations containing the time
as a parameter, simple derivations given for the symplectic condition do not hold
anymore. However, the symplectic condition still remains a necessary and sufficient
condition for the canonical transformation. A canonical transformation involving
time can be written in the form:

ξ = ξ(Φ, t) (1.123)

which is assumed to involve continuously as the time increases from the initial value
t0. If the transformation

Φ → ξ(t) (1.124)

is canonical, then also the transformation

Φ → ξ(t0) (1.125)

is canonical. Moreover, based on the definition of the canonical transformation,

ξ(t0) → ξ(t) (1.126)

is also a canonical transformation. In Eq. (1.125) the initial time t0 is a fixed
constant, thus this condition satisfies the symplectic condition Eq. (1.122). Now,
suppose that the transformation of Eq. (1.126) satisfies the symplectic condition,
then it is easy to show that also the general transformation given by Eq. (1.124) will
satisfy the symplectic condition.

In order to show that the symplectic condition holds for transformation of the
type Eq. (1.126), we will start introducing the concept of the infinitesimal canonical
transformation. In such concept, it is assumed that the new variables differ from the
old only by infinitesimals. Only first-order terms in these infinitesimals are to be
retained in all calculations. The transformation equations can be written as

Qi = qi + δqi (1.127)

Pi = pi + δpi (1.128)
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and in the matrix form as

ξ = Φ + δΦ (1.129)

Therefore, an infinitesimal canonical transformation differs only infinitesimally
from the identity transformation. That is, in the generator formalism, a suitable
generating function for an infinitesimal canonical transformation can be written as

F2 = qiPi + εG(q, P, t) (1.130)

where ε is a infinitesimal parameter of the transformation and G is a function of
2n+ 1 parameters. The transformation equation for the momenta is

pj = ∂F2

∂qj
= Pj + ε

∂G

∂qj
(1.131)

or

δpj ≡ Pj − pj = −ε
∂G

∂qj
(1.132)

Similarly, transformation equation for Qj is determined as

Qj = ∂F2

∂Pj

= qj + ε
∂G

∂Pj

(1.133)

or

δqj ≡ Qj − qj = ε
∂G

∂Pj

(1.134)

From Eq. (1.132) it can be seen that P and p differ from each other by only an
infinitesimal, thus Pj can be replaced by pj in the derivative function of Eq. (1.134).
In such case, we may consider G as a function of q and p and possibly time t . Here,
the function G(q, p) will be referred as the generating function of the infinitesimal
canonical transformation. Thus, Eq. (1.134) can be written as:

δqj = ε
∂G

∂pj

(1.135)

Both Eqs. (1.132) and (1.135) can be combined in a matrix form as:

δΦ = εJ
∂G

∂Φ
(1.136)
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A typical example of the infinitesimal canonical transformation is the transfor-
mation presented by Eq. (1.126) when t differs from t0 by a small amount dt :

ξ(t0) → ξ(t0 + dt) (1.137)

where dt is the infinitesimal parameter ε. A continuous transformation ξ(t0) → ξ(t)

can be seen as a succession of infinitesimal canonical transformations of type
Eq. (1.137) in steps of dt . Therefore, it is sufficient to show that Eq. (1.137) satisfies
the symplectic condition Eq. (1.122). The Jacobian matrix for an infinitesimal
transformation is

M ≡ ∂ξ

∂Φ
= I + ∂δΦ

∂Φ
(1.138)

Or, by replacing Eq. (1.136) into Eq. (1.138), we get

M = I + εJ
∂2G

∂Φ∂Φ
(1.139)

with

(
∂2G

∂Φ∂Φ

)

ij

= ∂2G

∂Φi∂Φj

Using the property of the matrix J as anti-symmetrical matrix, the transpose of M
can be written as

M′ = I − ε
∂2G

∂Φ∂Φ
J (1.140)

The symplectic condition then can be written as

MJM′ =
(

I + εJ
∂2G

∂Φ∂Φ

)
J
(

I − ε
∂2G

∂Φ∂Φ
J
)

(1.141)

Retaining only the first order terms, the expression in Eq. (1.141) can be further
simplified as

MJM′ = J + εJ
∂2G

∂Φ∂Φ
J − Jε

∂2G

∂Φ∂Φ
J (1.142)

= J

indicating that the symplectic condition holds for any infinitesimal canonical
transformation.
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1.10 Poisson Brackets

The Poisson bracket of any two functions u and v with respect to canonical variables
q and p is defined as

[u, v]q,p =
n∑

i=1

(
∂u

∂qi

∂v

∂pi

− ∂u

∂pi

∂v

∂qi

)
(1.143)

This indicates the existence of a symplectic structure, similarly to the Hamilton’s
equations where q is coupled with p and p with −q. The Poisson bracket can be
written as a matrix form

[u, v]Φ =
(
∂u

∂Φ

)′
J
∂v

∂Φ
(1.144)

where (· · · )′ stands for transpose. Consider that the functions u and v are from the
set of canonical variables q and p. Then, we can write

[
qj , qk

]
q,p

= 0 (1.145)
[
pj , pk

]
q,p

= 0
[
qj , pk

]
q,p

= δjk

[
pj , qk

]
q,p

= −δjk

which can be summarized into a matrix form by introducing the square matrix
Poisson bracket, [Φ,Φ], with elements

[Φ,Φ]ij =
[
Φi,Φj

]

as

[Φ,Φ]Φ = J (1.146)

Consider now u and v are members of the new variables Q and P , or that ξ is
defined in terms of old variables (q, p) from Eq. (1.123). Then, the Poisson brackets
formed out of (Q, P ) is defined as

[ξ , ξ ]Φ =
(

∂ξ

∂Φ

)′
J
∂ξ

∂Φ
(1.147)

Using the definition of the Jacobian matrix, we can re-write Eq. (1.147) as

[ξ , ξ ]Φ = M′JM (1.148)
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If the transformation Φ → ξ is canonical, then the symplectic condition holds, and
Eq. (1.148) takes the form

[ξ , ξ ]Φ = J (1.149)

The inverse is also true, that is, if the condition given by Eq. (1.149) is satisfied, then
the transformation is canonical.

The Poisson brackets of the canonical variables in Eq. (1.146) or Eq. (1.149) are
called the fundamental Poisson brackets. Using Eq. (1.146), we have

[ξ , ξ ]ξ = J (1.150)

Eq. (1.149) indicates that the fundamental Poisson brackets of the variable ξ have
the same value when evaluated with respect to any canonical coordinate set. That is,
the fundamental Poisson brackets are invariant under canonical transformation.

Equation (1.148) states that the invariance is a necessary and sufficient condition
for the transformation matrix to be symplectic. Therefore, the invariance of the
fundamental Poisson brackets is equivalent to the symplectic condition for a
canonical transformation.

1.10.1 Equations of Motion in the Poisson Bracket
Formulation

The framework of the Hamiltonian formalism can be reformulated using the Poisson
brackets. Consider a function of the canonical variables and time, u(q, p, t), then
the total time derivative of u is

du

dt
=

n∑

i=1

(
∂u

∂qi
q̇i + ∂u

∂pi

ṗi

)
+ ∂u

∂t

Using the Hamilton’s equations of motion, this derivative can be written as

du

dt
=

n∑

i=1

(
∂u

∂qi

∂H

∂pi

− ∂u

∂pi

∂H

∂qi

)
+ ∂u

∂t
(1.151)

or

du

dt
= [u,H ] + ∂u

∂t
(1.152)

Eq. (1.152) can also be written as the following using the symplectic notations:

du

dt
=

(
∂u

∂Φ

)′
Φ̇ + ∂u

∂t
(1.153)
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Eq. (1.152) can be considered as the generalized equation of motion for an
arbitrary function u in the Poisson bracket formulation. If the function u is one
of the canonical variables, it reduces to the Hamilton’s equations as a special case:

q̇i = [qi,H ] , ṗi = [pi,H ] (1.154)

or using the symplectic notation:

Φ̇ = [Φ,H ] (1.155)

Using the definition of the Poisson bracket:

[Φ,H ] = J
∂H

∂Φ
(1.156)

Replacing Eq. (1.156) into Eq. (1.155), we get

Φ̇ = J
∂H

∂Φ
(1.157)

which is the Hamilton’s equation of motion.
If we take u as the Hamiltonian function H , then from Eq. (1.152) we get

dH

dt
= ∂H

∂t

The generalized equation of motion derived here is canonically invariant. That is,
it is valued in any set of canonical variables (q, p) used to express the function
u or to evaluate the Poisson bracket. Important here is that the Hamiltonian must
be the one which is appropriate to the new set of canonical variables. Thus, upon
transformation from one set of canonical variables to a new set of variables by a
time-dependent canonical transformation, we have to change to the transformed
Hamiltonian H.

1.10.2 Conservation Laws in the Poisson Bracket Formulation

If u is a constant of motion (du/dt = 0), then from Eq. (1.152), we obtain

− [u,H ] = ∂u

∂t
(1.158)

or

[H,u] = ∂u

∂t
(1.159)
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In general, all the functions that satisfy Eq. (1.159) are constants of motion, and
conversely, if the Poisson bracket of H with any function u, which is constant of
motion, equals the explicit time derivative of u with time t . If the constant of motion
does not depend on time explicitly, then ∂u/∂t = 0, then Eq. (1.159) can be written
as

[H,u] = 0 (1.160)

Furthermore, if u and v are two constants of motion and not explicit function of time
t , then

[H, [u, v]] = 0 (1.161)

That is, the Poisson bracket of u and v is also a constant of motion. This is known
as Poisson’s Law:

The Poisson bracket of any two constants of the motion represents a quantity that is a
constant of the motion.

1.10.3 Infinitesimal Canonical Transformations

The Poisson bracket notation can also be used to derive the basic equations of an
infinitesimal canonical transformation. Such transformation is a special case of a
transformation that is a continuous function of a parameter. It can be started from the
identity transformation at some initial value of the parameter, which often can be set
to zero for convenience. If the parameter is small enough to be treated as a first-order
infinitesimal, then the transformed canonical variables differ only infinitesimally
from the initial conditions:

ξ = Φ + δΦ (1.162)

The change is given in terms of the generator function G as

δΦ = εJ
∂G(Φ)

∂Φ
(1.163)

Using the definition of the Poisson bracket given by Eq. (1.146), we obtain

[Φ, u] = J
∂u

∂Φ
(1.164)

where u can be any canonical variable. If u is taken to be G function, then

[Φ,G] = J
∂G

∂Φ
(1.165)
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Combining Eqs. (1.163) and (1.165), we obtain

δΦ = ε [Φ,G] (1.166)

If it is considered an infinitesimal canonical transformation in which the continuous
parameter is time t , such that, ε = dt , and moreover, considering that G is the
Hamiltonian function H , then we get

δΦ = dt [Φ,H ] = Φ̇dt = dΦ (1.167)

These equations state that the transformation changes the coordinates and momenta
at the time t to the values that have at the time t + dt . Therefore, the motion of
the system in the time interval dt can be described by an infinitesimal contact
transformation generated by the Hamiltonian. Furthermore, the motion of the
system in a finite interval of time from t0 to t is described by succession of
infinitesimal contact transformations, which is equivalent to a single finite canonical
transformation.

As a result, the values of canonical variables q and p at any time t can
be determined from their initial values by a canonical transformation that is a
continuous function of time. Thus, the motion of a mechanical system corresponds
to the continuous time evolution of a canonical transformation. According to this
view, the Hamiltonian is the generator of the system motion with time. Conversely,
there exists a canonical transformation from the values of the coordinates and
momenta at any time t to their constant initial values, which is equivalent to solving
the equations of motion of the system.

After this discussion, we can have a better view of the canonical transformations.
In the beginning, we started saying that the canonical transformations are a way of
changing the coordinates that characterize the phase space of the mechanical system.
That is, a change from the phase space vector Φ with coordinates (q, p) to the vector
ξ with coordinates (Q, P ). Thus, if at some initial time the system is described by
the point A in phase space, it could also be equally described by the transformed
point B, as shown in Fig. 1.4. Therefore, any function of the coordinates of the
system would have the same value for a system configuration whether it was at the
point (q, p) or at the (Q, P ). That is also called the passive view of a canonical
transformation.

Fig. 1.4 The passive view of
canonical transformations
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Fig. 1.5 The active view of
canonical transformations

In contrast, in the Hamiltonian formalism, we described the canonical transfor-
mation as a relation between the coordinates of one point in phase space to those
of another point in the same phase space. Using this point of view, the canonical
transformation is a mapping of the points of phase space onto themselves. That is
called the active view of the interpretation of the canonical transformation, as shown
in Fig. 1.5. In effect, the active description considers the canonical transformation
as moving the system configuration from one position with coordinates (q, p) to
another point (Q, P ) in phase space. However, the canonical transformation does
not change the system configuration, but it expresses one configuration of the system
in terms of another.

1.10.4 Liouville’s Theorem

Another application of the Poisson brackets is the Liouville’s theorem, which is
a fundamental theorem of the statistical mechanics. As we described above, the
exact motion of the classical mechanical system is entirely determined by the initial
conditions. However, for complex systems, it is often impractical to calculate the
exact solution. Besides, the initial conditions may also be unknown completely.
Therefore, statistical mechanics does not attempt to determine the complete solution
for complex systems containing many particles. The primary goal of the statistical
mechanics is to predict the averages of the properties by examining the motion of
a large number of identical systems, called ensemble.2 Then, the values of some
quantities of interest are calculated by performing the ensemble averages over all
systems in the ensemble. Each system of the ensemble represents one single point
in the phase space, thus, the ensemble corresponds to a swarm of a point in this
phase space.

Liouville’s theorem states:

The systems density in the neighborhood of a given system in phase space remains constant
in time.

2Note that principals of statistical mechanics will be described in more details in Chap. 3.
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Denote with f the density of systems in the phase space, which will depend on
the coordinates (qi, pi) that depend implicitly on the time t . There also may be an
explicit dependence on the time t , that is the density may vary with time even when
evaluated at a fixed point in phase space. The total time derivative of the density
f (q, p, t) due to both types of variation with time, can be calculated as

df

dt
=

n∑

i=1

(
∂f

∂qi
q̇i + ∂f

∂pi

ṗi

)
+ ∂f

∂t
(1.168)

=
n∑

i=1

(
∂f

∂qi

∂H

∂pi

− ∂f

∂pi

∂H

∂qi

)
+ ∂f

∂t

= [f,H ] + ∂f

∂t

where the definitions of the Hamilton’s equations of motion are used, as well as, the
definition of the Poisson brackets.

The motion of the ensemble of system points through the phase space corre-
sponds to the motion of the fluid in a multidimensional space. The partial derivative
∂f/∂t , called the Eulerian derivative, measures the variation at a fixed point in phase
space, and the total derivative df/dt , called the Lagrangian derivative, gives the
variation of f following the motion of a particular bit of the ensemble in time.
These two derivatives correspond to two different views used to consider the fluid
flow. The partial derivative at a fixed point (q, p) in the phase space is in line with
the Eulerian viewpoint that looks on the coordinates as identifying a point in space.
The total derivative corresponds to the Lagrangian point of view in which individual
particles are followed in time.

Consider an infinitesimal volume in the phase space dΓ = ∏n
i=1 dqidpi

surrounding a given system point (q, p), with the boundary of the volume formed
by the surface of neighboring system points at the time t = 0. With time, the
system points defining the volume move through the phase space, and the volume
containing these points will change shapes as time processes, as illustrated in
Fig. 1.6 for the two-dimensional case. However, the number of systems within the
volume remains constant, that is, a system initially inside the volume can never get
out of the volume. Similarly, a system initially outside the volume can never enter
the volume.

In the active picture shown above of a canonical transformation, the motion of a
system point in time is the evolution of a canonical transformation generated by the
Hamiltonian. The canonical variables (q, p) at time t2 are related to the variables at
time t1 by a particular canonical transformation (see Fig. 1.6.) Thus, the canonical
transformation gives the change in the infinitesimal volume element about a system
point in the time interval. Because the Poincaré’s integral invariant says that a
volume element in phase space is invariant under a canonical transformation, we
can conclude that the size of volume element about the system point in the phase
space can not vary with time.
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Fig. 1.6 The motion of a
volume in two-dimensional
phase space

Therefore, both the number of systems inside the infinitesimal volume, dN , and
the volume dΓ are constants. Hence, the density

f = dN

dΓ

is also constant in time, that means:

df

dt
= 0

which is a prove of the Liouville’s theorem. Thus, Eq. (1.168) can also be written as

∂f

∂t
= − [f,H ] (1.169)

which is an alternative statement.
If the ensemble of systems is in statistical equilibrium, the number of systems

in a given state must be constant in time, and hence the density of system points
at a given point in phase space does not change with time. Since the variation of f
with time at a fixed point corresponds to the partial derivative with respect to the
time t , then ∂f/∂t must be zero in statistical equilibrium. Thus, in the equilibrium
Eq. (1.169) reduces to

[f,H ] = 0 (1.170)

Therefore, in statistical equilibrium the density of states f is a function of those
constants of the motion of the system that does not involve time explicitly, and then
the Poisson bracket of f with H must vanish. For conservative systems, f can be
any function of the energy, for which the equilibrium condition is automatically
satisfied.
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1.11 Invariant Measure

Consider again the dynamical system represented by Eq. (1.30) (Sect. 1.4), where
η = (x1, x2, · · · , xn) is an n-dimensional generalized state vector and V(η, t) is an
n-dimensional generalized vector function of η and time t .

In general, knowing some initial conditions for η at t = t0, η(t0), the vector η(t)

at any time t > t0 can be determined. Therefore, we can write for i = 1, 2, · · · , n

xi(t) = xi(t; η(t0)) (1.171)

Following Tuckerman et al. (2001), Eq. (1.171) represents a coordinates transforma-
tion from their initial values at t = t0 to the coordinates at t > t0. The phase space
volume transforms in time under the dynamical evolution according to

dΓ (t) = J (η(t); η(t0)) dΓ (t0) (1.172)

where dΓ = dx1dx2 · · · dxn is the phase space volume and J (η(t); η(t0)) is the
Jacobian of the transformation determined as determinant of the transformation
matrix M (Tuckerman et al. 2001):

J (η(t); η(t0)) = det (M) = exp (Tr (ln M)) (1.173)

where

Mij = ∂xi(t)

∂xj (t0)
(1.174)

In Eq. (1.173), Tr denotes the trace of a matrix and ln the natural logarithm function.
According to Tuckerman et al. (2001), it can easily be shown that:

dJ (η(t); η(t0))
dt

= exp (Tr (ln M))Tr

(
M−1 dM

dt

)
(1.175)

= J (η(t); η(t0))
∑

ij

M−1
ij

dMji

dt

= J (η(t); η(t0))
∑

ij

∂xi(t0)

∂xj (t)

d

dt

(
∂xj (t)

∂xi(t0)

)

= J (η(t); η(t0))
∑

ij

∂xi(t0)

∂xj (t)

∂ẋj (t)

∂xi(t0)
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= J (η(t); η(t0))
∑

ijk

∂xi(t0)

∂xj (t)

∂ẋj (t)

∂xk(t)

∂xk(t)

∂xi(t0)

= J (η(t); η(t0))
∑

jk

δjk
∂ẋj (t)

∂xk(t)

= J (η(t); η(t0))
∑

k

∂ẋk(t)

∂xk(t)

where

M−1
ij = ∂xi(t0)

∂xj (t)
(1.176)

is the inverse matrix of M. Denoting by

κ(η, t) = ∇η · η̇ (1.177)

the compressibility of the dynamical system, it can be written that (Tuckerman et al.
2001)

dJ (η(t); η(t0))
dt

= J (η(t); η(t0)) κ(η, t) (1.178)

Similarly, the Jacobian of the inverse transformation is (Tuckerman et al. 2001):

J ′ = det
(

M−1
)
= exp (−Tr (ln M))

Therefore, it can be shown that

JJ ′ = 1 (1.179)

Furthermore, it can be found that

dJ ′ (η(t); η(t0))
dt

= −J ′ (η(t); η(t0)) κ(η, t) (1.180)

Multiplying both sides of Eq. (1.178) by J ′ and both sides of Eq. (1.180) by J , then
using Eq. (1.179), we get

J ′ dJ
dt

+ J
dJ ′

dt
= 0
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In general, for a Hamiltonian system, the compressibility vanishes (Tuckerman
et al. 2001), and thus

1

J (η(t); η(t0))
dJ (η(t); η(t0))

dt
= 0

or (taking into account Eq. (1.179))

J (η(t); η(t0)) = 1

This can be shown for the simplest case of a Hamiltonian system with Hamilto-
nian function given as:

H(q, p) =
n∑

i=1

p2
i

2mi

+ U(q1, q2, · · · , qn)

where U(q1, q2, · · · , qn) is the potential energy function of only coordinates and

η = (q1, q2, · · · , qn, p1, p2, · · · , pn)

Using the Hamiltonian equations of motion for i = 1, 2, · · · , n, we get

q̇i = pi

mi

(1.181)

ṗi = −∇qiU(q1, q2, · · · , qn)

Therefore, it can be found that the compressibility is:

κ(η, t) =
n∑

i=1

(
∂q̇i

∂qi
+ ∂ṗi

∂pi

)
(1.182)

=
n∑

i=1

(
1

mi

∂pi

∂qi
− ∂∇qiU(q1, q2, · · · , qn)

∂pi

)
= 0

because coordinates qi (or conjugated momenta pi) do not depend on conjugated
momenta pi (or coordinates qi). Therefore, J (η(t); η(t0)) = 1, and

dΓ (t) = dΓ (t0)

That indicates that the phase space of the Euclidean geometry is conserved, and
hence the phase space is considered to be flat (Tuckerman et al. 2001).

In general, the Jacobian determines how the phase space volume transforms
according to the dynamical system given by Eq. (1.171) and how the phase space
metric transforms. For non-Hamiltonian systems κ(η, t) does not vanish, and
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thus the volume of the phase space in not an invariant measure of dynamical
systems (Tuckerman et al. 1999, 2001). In such case, by integrating the expression
given by Eq. (1.178) from t0 to t , we obtain (Tuckerman et al. 2001):

J (η(t); η(t0)) = exp

⎛

⎝
t∫

t0

κ(η, t) dt

⎞

⎠ (1.183)

= exp (W(η, t)−W(η, t0))

where

κ(η, t) = dW(η, t)

dt

Replacing expression given by Eq. (1.183) into Eq. (1.172), we obtain:

exp (−W(η, t)) dΓ (t) = exp (−W(η, t0)) dΓ (t0) (1.184)

Comparing this expression with the one given in terms of the metric determinant
factor:

√
g(η, t)dΓ (t) = √

g(η, t0)dΓ (t0)

where
√
g(η, t) is the determinant of the metric tensor

G =
(
∂H

∂p
,−∂H

∂q

)

we obtain that

√
g(η, t) = exp (−W(η, t))



Chapter 2
Principles of Classical Thermodynamics

In the chapter, we discuss the principles of classical thermodynamics. In particular,
we will describe the laws of thermodynamics, thermodynamic potential functions,
Maxwell relations, and stability of thermodynamic systems.

For further information on the classical thermodynamics, the reader may consider
the book by Callen (1985).

2.1 Introduction

The macroscopic quantities, such as the energy, temperature, and pressure are, in
fact, statistical: i.e., in equilibrium, they exhibit random fluctuations around their
mean values. Therefore, plotting out the probability distribution for the energy, for
instance, for a system in thermal equilibrium with its surrounding, we would obtain
a Gaussian with minimal fractional width. We expect

ΔE

Ē
∼ 1√

f
(2.1)

Here, the number of degrees of freedom f is about 1024 for laboratory scale systems.
That means that the statistical fluctuations of macroscopic quantities around their
mean values are typically only about 1 in 10−12.

Since the statistical fluctuations of these equilibrium quantities are so small, we
can neglect them to an excellent approximation, and replace macroscopic quantities,
such as the energy, temperature, and pressure, and so on, by their mean values, such
as E → Ē, T → T̄ , and p → p̄, and so on.
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In the following discussion, we will drop the over bars altogether, for simplicity
of notation. This prescription, which is the essence of classical thermodynamics,
is equivalent to replacing all statistically varying quantities by their most probable
values.

Although there are formally four laws of thermodynamics (from the zeroth to the
third), the zeroth law is a result of the second law, and the third law is only relevant
at temperatures close to absolute zero. Thus, for most purposes, the two rules which
matter are the first law and the second law.

2.2 Microscopic and Macroscopic Views

There are two viewpoints for describing thermodynamics: macroscopic and micro-
scopic. The macroscopic viewpoint is also known as classical thermodynamics,
where the fact that matter is composed of molecules and that they are in movement
does not count. The main focus is on the behavior of the entire system when the
system is subject of the energy transfer or other thermodynamic processes. In this
approximation, the mathematics is elementary, and hence it allows analyzing in a
straightforward manner different complex systems that are of interests in industrial
applications.

The microscopic approximation, also known as statistical thermodynamics,
includes the motion of molecules or atoms of the system. That is done by using
some mathematical models to describe the behavior of the constituent particles
of the system, such as the molecules and atoms, and hence being able to derive
conclusions in the response of the matter. However, this approximation is more
complicated in terms of mathematical models used to predict the behaviour of the
constituent particles.

In this chapter, we are focused on the macroscopic description of thermodynam-
ics, or the so-called classical thermodynamics. While in the next chapter we will
introduce statistical mechanics and describe statistical thermodynamics.

2.3 Some Definitions of Thermodynamics

The concept of the system is of particular importance. A system is everything that
we want to analyze from a thermodynamic point of view.

We will draw the boundary between the content of a system from the environment
(which is everything else outside the system) by constructing a boundary wall,
which isolates the system from the surrounding. This boundary wall can be real,
for example, walls of the container holding the system of interest, or it could also
be an imagined boundary or a combination of both.
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A system is called isolated system if its mass remains constant. For example, a
water-like system in a container is considered to be an isolated system, if we assume
that the vapors of water do not leave the boundary separating the system from the
surrounding.

If the mass inside the system changes, for example, there is some mass that passes
through the boundary (either enters or leaves the system or both), then it is called
open system.

Everything that is outside the system boundary, but in close approximation with
the system boundary, is called surrounding. In principle, everything that is too far
from the system boundary may not be able to interact with the system (or the
interactions with our system is so weak that may not be able to change its state),
and hence it does not show any particular interest to be described in this context.

Combination of a system with its surrounding forms the so-called universe.
Because of the universe includes only surrounding close to the system of interest, in
this context, it is just an approximation.

The thermodynamic property is a characteristic or an attribute that can be used to
describe the substance. It can be measured and quantified. In practice, to define
a substance, those properties that naturally are easy to measure will be used.
Moreover, we have to use enough number of properties to characterize the substance
uniquely.

It is useful to determine two classes of properties: extensive and intensive
properties. The extensive properties are those that change proportionally with the
number of particles (or mass) of the substance. For example, the volume is an
extensive property, from its definition as:

V = m

ρ

where m is the mass and ρ is the density, and hence V is proportional to m.
In contrast, the intensive properties are independent on the number of particles

of the substance (or its mass), such as the pressure or temperature because they do
not depend on the number of particles or the mass of a substance. For example,
the pressure at an equal distance from the surface of either the ocean or pool is the
same.1

If we merge two bottles of water at the same temperature in a big container, then
this temperature of the water will be the same as the temperature of water in each
bottle. But not the sum of the temperatures in each bottle!2

1We have assumed here the same properties of the water, such as the density.
2Note that if the bottles are at different temperatures, let us say T1 and T2, if they mix in a bigger
container, then because of the thermal equilibrium law (discussed in the following sections) the
heat flows from the hot water into the cold water until the temperatures become equal. However,
the final temperature of the water in the container will not be T1 + T2.
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2.4 The First Law of Thermodynamics and Equilibrium

The first law is related to the internal energy. This quantity, denoted with E,
determines the total energy of the system. It is postulated that the internal energy
has two properties: First, the internal energy is extensive. Considering a composed
system, as shown in Fig. 2.1, the total internal energy of the system, based on the
fact that it is an extensive quantity, is

E = E1 + E2

Therefore, the total energy as an extensive property of the system is proportional
to its size. If the size of the system doubles by keeping constant all the other features,
then the energy of the systems doubles.

The second postulate says that the energy of an isolated system is constant. That
is, the energy of system changes if we do something over the system; for example,
we allow one form of energy to be given or taken from the system, such as doing
work on the system or giving heat to the system. Thus, for an infinitesimal process,
the first law of thermodynamics is written

dE = δQ+ δW (2.2)

Here, dE is the change in internal energy of the system, δQ is the heat absorbed
by the system, and δW is the work done on the system by its surroundings. With
δW we have denoted the differential of work done on the system, which is taken as
δW < 0, and δQ is the differential of heat given to the system (δQ > 0).

Note that the first law of thermodynamics could equally be in terms of the heat
emitted by the system or the work done by the system. Therefore, our definition in
Eq. (2.2) is just conventional. Both descriptions are true as long as we are consistent
in our definitions.

The work has the form:

δW = f · dX

where f is the force exerted on the system, and X is an extensive mechanical
parameter. A well known example for us is

δW = −pextdV

where V is the volume of the system and pext is the external pressure.

Fig. 2.1 A composed system
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The experimental results indicate that isolated systems tend to go spontaneously
towards simple final states, which are called equilibrium states. With simple states,
we should understand states that are characterized by a small number of parameters
from a macroscopic point of view. In particular, the equilibrium state from the
macroscopic point of view is completely defined by E and X. In the case of a
system that can be characterized by extensive parameters, such as the volume and
the number of particles (e.g., atoms, molecules), the entire set of parameters that
characterize the system is

E,V, n1, · · · , nj , · · · , nr︸ ︷︷ ︸
X

(2.3)

Here, V is the volume, nj is the number of moles of the component j , and r is
the total number of components. If on the system we apply an external electrical
or magnetic field, then electric dipole momentum or magnetic dipole momentum of
the system could enter on the list of parameters.

The complete list, which is characterizing the macroscopic equilibrium state,
sometimes, it is difficult to be determined and it could be longer. However, this list
is much smaller than the most significant number of degrees of freedom necessary to
characterize the non-equilibrium macroscopic state of a system with many particles.

In general, there are no physical systems in complete equilibrium, but they are
characterized by some metastable states, which can practically be a thermodynamic
equilibrium. If the energy and the size of the system remain constant during the
entire time of the observation, then the system can be considered in an equilibrium
state, and its properties can be characterized by parameters given in expression of
Eq. (2.3).

2.5 The Second Law of Thermodynamics

Figure 2.2 shows an isolated system, as an example.
We can impose these changes in the system: Allow the piston to move along the

cylinder; Create a hole in the piston, so that a single molecule can pass through;
Or remove the adiabatic wall and allow the system to exchange heat with the
surrounding.

Fig. 2.2 An isolated system
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Due to these possible changes, the system moves towards a final state, based on
the so-called second law of thermodynamics, which is postulated as the following:

Exists an extensive function of the state, S(E,X), which is a monotonically increasing
function of E and if the state B can be reached in an adiabatic way from the state A, then

SB ≥ SA

Note that if the state B is reachable from the state A in a reversible way, then
the process B → A can adiabatically be realized as well. In this case, the postulate
given above implies that SA ≥ SB . Therefore, if the two states A and B are reachable
in an adiabatic process and in a reversible way, then we can write

SA = SB

Differently, mathematically, for a reversible adiabatic process, this can be written as

ΔS = SB − SA = 0

For any other irreversible adiabatic process, it takes the following expression:

ΔS > 0

We can combine them for the general case of an adiabatic process, and write it as

(ΔS)adiabatic ≥ 0

Here, equality stands only for a reversible adiabatic process.
The extensive function S(E,X) is called entropy. As we showed above, the

change on the entropy is zero for any reversible adiabatic process. Moreover,
entropy is a state function, which means that entropy is determined by these states
that are functions of E and X. These states are states of thermodynamic equilibrium.
Let us consider first the differential of the entropy S:

dS =
(
∂S

∂E

)

X
dE +

(
∂S

∂X

)

E

· dX (2.4)

The first law of thermodynamics for a reversible process can be written in the
following form

dE = δQ+ f · dX (2.5)

Substituting Eq. (2.5) into Eq. (2.4), we get

dS =
(
∂S

∂E

)

X
δQ+

[(
∂S

∂X

)

E

+
(
∂S

∂E

)

X
f
]
· dX
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For an adiabatic and reversible process, (δQ)adiabatic = 0 and (dS)rev = 0, and
hence

(
∂S

∂X

)

E

= −
(
∂S

∂E

)

X
f (2.6)

We can define the temperature T as the derivative of the energy E with respect to
the entropy S as

T ≡
(
∂E

∂S

)

X
(2.7)

Since the entropy S is a monotonically increasing function of energy E, then(
∂S

∂E

)

X
≥ 0, or equivalently,

(
∂E

∂S

)

X
≥ 0. Thus, T ≥ 0, which is in agreement

with our concept of temperature. Since both E and S are extensive quantities, then
the temperature is an intensive property. That is, T is independent on the size of the
system.

The combination of the above equations leads to

(
∂S

∂X

)

E

= − f
T

(2.8)

From Eq. (2.4), we can write

dS =
(

1

T

)
dE −

(
f
T

)
· dX (2.9)

or we can re-arrange this equation into the following expression:

dE = T dS + f · dX (2.10)

This equation indicates that the energy, for a thermodynamic equilibrium, is
characterized by S and X, that is

E = E(S,X)

Comparing the first law of thermodynamic, Eq. (2.2), with expression given by
Eq. (2.10), we get

dS = (δQ)rev

T

and hence the second law of thermodynamics for a reversible process gives

(δQ)rev = T dS, (2.11)
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Fig. 2.3 Illustration of an internal constraint of a system. A piston can move freely along the
cylinder by changing the volume V (1) and V (2) of each subsystem, but the total V is constant

for a quasi-static process, where T is now the thermodynamic temperature, and dS

is the change in entropy of the system. While, for any process, we can write

dS ≥ δQ

T

Here, the equality stands for a reversible process.
Consider a system that is partitioned into subsystems and the internal constraints

related to the extensive parameters, such that a process applied to the system does
not change the total energy E and X of the system, but the values of these quantities
in each subsystem are allowed fluctuating. For example, Fig. 2.3 shows an example
of internal constraints applied to a composed system of two subsystems, where the
volume V = V (1) + V (2) of the entire system is fixed, while the volume of each
subsystem changes using, for example, an internal piston moving along the cylinder.
To displace the internal piston along the cylinder we need to perform work, and
hence the internal energy of the system will change.

The extremes are usually given in terms of variations far from the equilibrium
states. Mathematically, we can express ΔS for these variations as a Taylor series:

ΔS = S(E,X; δY)− S(E,X; 0) = (δS)E,X + (δ2S)E,X + · · ·

where δY is a variation due to the application of the internal constraint, such as

X = X(1) + X(2) =
[
X(1) + δY

]
+

[
X(2) − δY

]
,

and

(δS)E,X =
[(

∂S

∂Y

)

E,X

]

Y=0

δY

(δ2S)E,X = 1

2

[(
∂2S

∂Y2

)

E,X

]

Y=0

(δY)2

(2.12)
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Fig. 2.4 A composite system
isolated from surrounding
with a heat conducting wall
dividing two subsystems (1)
and (2)

Based on the principle of entropy for all variations far from subspace of equilibrium
states, we can write

(δS)E,X ≤ 0

and for all variations far from stable equilibrium state, we can write

(ΔS)E,X < 0

This implies that the entropy obtains its maximum value at equilibrium state, which
is known as the principle of maximum entropy.

From the principle of the maximum entropy, we can obtain another principle,
which is known as the principle of minimum energy. To derive this principle, we
can consider a composed system, as shown in Fig. 2.4. Let us denote with E(1) and
E(2) the equilibrium values of the energies. Using the principle of the maximum
entropy, we can write

S(E(1) −ΔE,X(1))+ S(E(2) +ΔE,X(2)) < S(E(1) + E(2),X(1) + X(2))

ΔE is the amount of energy reduced from the subsystem (1) and added to the
subsystem (2). By the division of the energy, the value of entropy decreases as
indicated by the sign of the inequality. For the composite system, we had used
the extensive property of the entropy when we calculated the total energy of the
composite system by adding the values of the entropy of each part.

The temperature is a positive quantity, therefore, the entropy is a monotonically
increasing function of the energy. Thus,

E < E(1) + E(2)

for ΔE �= 0 such that

S(E(1) −ΔE,X(1))+ S(E(2) +ΔE,X(2)) = S(E(1) + E(2),X(1) + X(2))
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Therefore, we can suppose that the application of the internal constraints with S and
X unchanged, will increase the total energy of the system. That is, E(S,X) is the
global minimum of

E(S,X; internal constraint)

This represents the so-called the principle of the minimum energy. Moreover, we can
give the principle of the minimum energy in terms of the mathematical variations
far from the equilibrium state. Thus, we can express ΔE for these variations as a
Taylor series

ΔE = E(S,X; δY )− E(S,X; 0) = (δE)S,X +
(
δ2E

)

S,X
+ · · ·

where δY is a variation or partition of internal extensive properties as the result of
application of the internal constraint. Thus, we can write

(δE)S,X =
[(

∂E

∂Y

)

S,X

]

Y=0

δY

(
δ2E

)

S,X
=

[
1

2

(
∂2E

∂Y 2

)

S,X

]

Y=0

(δY )2

These principles are summarized for all variations far from the subspace of
equilibrium states with δY = 0 as the following:

(δE)S,X ≥ 0

and for all variations far from the stable equilibrium states, we can write

(ΔE)S,X > 0

2.6 Thermal Equilibrium and Temperature

The variation principle of the second law of thermodynamics can be applied to
determine the criteria of the thermal equilibrium, which identifies T as the well-
known temperature. First, let us consider the system shown in Fig. 2.5.

We are assuming that there are small displacements around the equilibrium state
due to the internal constraints. Based on the variation principle for entropy, we can
write

(δS)E,X ≤ 0 (2.13)
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Fig. 2.5 A system used as
heat conductor

where E = E(1) + E(2) remains unchanged during the displacement. Thus, we get

δE = 0 = δE(1) + δE(2)

or

δE(1) = −δE(2) (2.14)

Since the entropy is an extensive quantity, then

S = S(1) + S(2)

Thus,

(δS)E,X = δS(1) + δS(2)

=
(
∂S(1)

∂E(1)

)

X

δE(1) +
(
∂S(2)

∂E(2)

)

X

δE(2)

=
(

1

T (1)
− 1

T (2)

)
δE(1) (2.15)

where we have replaced

(
∂S

∂E

)

X
= 1

T

and we have used Eq. (2.14). Using variation principle for entropy, Eq. (2.13), we
get

(
1

T (1)
− 1

T (2)

)
δE(1) ≤ 0

for all possible values of the small variations δE(1) (positive or negative). This
implies that in equilibrium the following equality holds

T (1) = T (2)
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Here, we initially assumed that system was at equilibrium, then by applying an
internal constraint we analyzed the response of the system, and by comparing with
the second law of thermodynamics we concluded about the initial equilibrium state.
This is known as the thermal equilibrium, which states that:

Two systems that are in contact with each other are in thermal equilibrium, if there is no
change in their states.

To derive the condition of the thermal equilibrium, we assumed that the system
is in the equilibrium state, and we learned about this state by applying an internal
constraint on the system. Then, we observed the reaction of the system to this
internal constraint, and using the second law of thermodynamics, we concluded
about the equilibrium of the initial state. This procedure is often used to identify the
equilibrium state of a system. In reality, this is also closely related to the nature of
the experimental observations. In particular, any real experiment that describes the
behavior of a system in equilibrium will observe the reaction of the system against
a disturbance.

In this way, we only have proved using the second law of thermodynamics
that the condition for thermal equilibrium is achieved when the two interacting
subsystems have the same temperature. In this proof, we used the variation principle
of the entropy. However, we can also apply the variation principle of the energy.

Now, we are going to consider what might happen when the system is not initially
in thermal equilibrium, for example, initially T (1) �= T (2). In fact, in a stable thermal
equilibrium, both temperatures equalize, as explained in the following.

For that, we are going to use again the second law, and this time we are going to
emphasize that transition to equilibrium is a natural process, thus change in entropy,
ΔS, is positive, ΔS > 0. That is,

dS >
δQ

T

and δQ for the entire system is zero. Therefore,

ΔS = ΔS(1) +ΔS(2) > 0

Supposing that the differences are small, as a result of this we can write

(
∂S(1)

∂E(1)

)

X

ΔE(1) +
(
∂S(2)

∂E(2)

)

X

ΔE(2) > 0

or, since ΔE(1) = −ΔE(2) and

(
∂S

∂E

)

X
= 1

T
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then,

(
1

T (1)
− 1

T (2)

)
ΔE(1) > 0

If we suppose that T (1) > T (2), then

(
1

T (1)
− 1

T (2)

)
< 0, and in order that

inequality to be satisfied, we must have that

ΔE(1) < 0

In similar way, if T (1) < T (2), then

(
1

T (1)
− 1

T (2)

)
> 0, and the inequality is

satisfied for ΔE(1) > 0.
Finally, the energy flows from the hotter system to the cold one. Besides, the heat

is a form of the energy that transfers as a result of the gradient in the temperature,
and the direction of this transfer is from the hotter system (the highest temperature)
to the colder system (the lowest temperature).

2.7 Legendre Transformation

This section introduces the main mathematical method for analyzing the macro-
scopic thermodynamics of a system, known as Legendre transformation. Also,
we will introduce a specific differential expression of the reversible work for the
systems that are, in particular, studied in the field of biology and chemistry.

In this case for the reversible displacements we can write:

f · dX = −pdV +
r∑

i=1

μidni (2.16)

where p is the pressure of system, V is the volume, ni is the number of moles of
the component i, r is the total number of components in the system, and μi is the
chemical potential of the component i. The chemical potential is determined from
Eq. (2.16) and the first and second laws as:

dE = T dS + f · dX = T dS − pdV +
r∑

i=1

μidni (2.17)

then, we can determine μi as

μi =
(
∂E

∂ni

)

S,V,nj �=ni
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That is, the chemical potential μi is the reversible change of the internal energy by
changing the number of moles ni and keeping constant S, V , and the number of
moles nj of other components in the system. Moreover, the chemical potential is an
intensive property of the system, which controls the mass or particles equilibrium
similarly to temperature T controls the thermal equilibrium. The gradient of the
chemical potential determines the mass transfer or reorganization of atoms and
molecules. In the absence of this gradient, an equilibrium of the mass establishes in
the system. The process of the re-organization of atoms and molecules determines
the equilibrium states between different phases of matter and between different
chemical components.

Equation (2.17) indicates that the internal energy is a function of S, V and ni (for
i = 1, 2, · · · , r):

E = E (S, V, n1, · · · , nr )

The principles of variations are obtained in the form:

(ΔE)S,V,n > 0 (2.18)

(δE)S,V,n ≥ 0

which can give information about the equilibrium states that are characterized by S,
V and ni (for i = 1, 2, · · · , r). Next, we will derive other thermodynamic functions
of states, equivalent to the internal energy E or entropy S, which are functions of
macroscopic properties of the system.

For this, let us consider a function f = f (x1, x2, · · · , xn), then

df =
n∑

i=1

uidxi (2.19)

ui =
(
∂f

∂xi

)

xj �=xi

In addition, we can determine another function g, such as

g = f −
n∑

i=r+1

uixi (2.20)

Moreover, we can write that

dg = df −
n∑

i=r+1

(uidxi + xidui) (2.21)
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=
n∑

i=1

uidxi −
n∑

i=r+1

(uidxi + xidui)

=
r∑

i=1

uidxi −
n∑

i=r+1

xidui

This equation indicates that

g = g (x1, x2, · · · , xr , ur+1, ur+2, · · · , un)

where ur+1, ur+2, · · · , un are the conjugated variables of xr+1, xr+2, · · · , xn. By
definition, the function g is called Legendre transformation of f . The function g

transforms the dependence from xr+1, xr+2, · · · , xn of f to ur+1, ur+2, · · · , un
of g.

Using the Legendre transformation and the expression given by Eq. (2.17), we
can see that the conjugated variables of each other are:

T ↔ S, −p ↔ V, μi ↔ ni

Therefore, in order to define a new thermodynamic function of (T , V, ni), we can
use Eq. (2.20) with f being E, and write

F = E − T S = F(T , V, n1, · · · , nr ) (2.22)

where F is called the Helmholtz free energy. The differential form of F is then given
as

dF = dE − T dS − SdT (2.23)

= T dS − pdV +
r∑

i=1

μidni − T dS − SdT

= −SdT − pdV +
r∑

i=1

μidni

Using Eq. (2.23), the macroscopic properties of the system can be determined as

S = −
(
∂F

∂T

)

V,n1,··· ,nr
(2.24)

p = −
(
∂F

∂V

)

T ,n1,··· ,nr

μi =
(
∂F

∂ni

)

T ,V,nj �=ni
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Other Legendre transformations are also possible, for instance, we can determine
a new thermodynamics function of S, p and n1, · · · , nr as

H = E + pV = H(S, p, n1, · · · , nr ) (2.25)

which is called enthalpy. The differential form of H is given as

dH = dE + pdV + V dp (2.26)

= T dS − pdV +
r∑

i=1

μidni + pdV + V dp

= T dS + V dp +
r∑

i=1

μidni

Eq. (2.26) can determine the following macroscopic properties of the system:

T =
(
∂H

∂S

)

p,n1,··· ,nr
(2.27)

V =
(
∂H

∂p

)

S,n1,··· ,nr

μi =
(
∂H

∂ni

)

S,p,nj �=ni

Another thermodynamic function is the Gibbs free energy, G, given as

G = E − ST + pV = G(T , V, n1, · · · , nr )

which is a natural function of T , p, and n1, · · · , nr . We can derive the differential
form of G as the following:

dG = dE − SdT − T dS + pdV + V dp (2.28)

= T dS − pdV +
r∑

i=1

μidni − SdT − T dS + pdV + V dp

= −SdT + V dp +
r∑

i=1

μidni
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The macroscopic properties of the system can be determined as

S = −
(
∂G

∂T

)

p,n1,··· ,nr
(2.29)

V =
(
∂G

∂p

)

T ,n1,··· ,nr

μi =
(
∂G

∂ni

)

T ,p,nj �=ni

The principles of variations of the thermodynamic functions F , H , and G are
given as

(δF )T ,V,n1,··· ,nr ≥ 0, (ΔF)T,V,n1,··· ,nr > 0 (2.30)

(δH)S,p,n1,··· ,nr ≥ 0, (ΔH)S,p,n1,··· ,nr > 0

(δG)T,p,n1,··· ,nr ≥ 0, (ΔG)T,p,n1,··· ,nr > 0

2.8 Maxwell Relations

When changing the order of taking mixed derivatives of a thermodynamic potential
creates a class of identities known as Maxwell relations. Using Maxwell relations,
different other quantities can be found to be related to each other.

Let us consider first the Helmholtz free energy for a system with one component
in its differential form:

dF = −SdT − pdV + μdn

Then, we can write that

S = −
(
∂F

∂T

)

V,n

p = −
(
∂F

∂V

)

T ,n

Using these two relations, we can determine the second partial derivatives of S and
p as the following:
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(
∂S

∂V

)

T ,n

= −
(

∂

∂V

(
∂F

∂T

)

V,n

)

T ,n

(2.31)

(
∂p

∂T

)

V,n

= −
(

∂

∂T

(
∂F

∂V

)

T ,n

)

V,n

= −
(

∂

∂V

(
∂F

∂T

)

V,n

)

T ,n

From Eq. (2.31), since the right-hand-side are equal, then we obtain that

(
∂S

∂V

)

T ,n

=
(
∂p

∂T

)

V,n

(2.32)

which is known as the first Maxwell relation. The left-hand-side indicates that the
entropy S is a function of V , T , and n. Equation (2.32) is a very useful relation,
because practically it is very difficult to measure entropy S; on the other hand
measuring the pressure p as a function of T is much easier, thus Eq. (2.32) can
be used to determine S.

Using the following differential form of the Gibbs free energy:

dG = −SdT + V dp + μdn

another Maxwell relation can be derived. In particular, we can obtain

S = −
(
∂G

∂T

)

p,n

V =
(
∂G

∂p

)

T ,n

The second order partial derivatives of S and V can now be derived as the following:

(
∂S

∂p

)

T ,n

= −
(

∂

∂p

(
∂G

∂T

)

p,n

)

T ,n

(2.33)

(
∂V

∂T

)

p,n

=
(

∂

∂T

(
∂G

∂p

)

T ,n

)

p,n

=
(

∂

∂p

(
∂G

∂T

)

p,n

)

T ,n

From Eq. (2.33), we obtain:

(
∂S

∂p

)

T ,n

= −
(
∂V

∂T

)

p,n

(2.34)

which is known as the second Maxwell relation.
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The first and the second Maxwell relations can be used to obtain also other
thermodynamic relations of practical interests. Taking the entropy S a function of
T , V and n

S = S(T , V, n)

then the differential form of S for fixed n is given as

(dS)n =
(
∂S

∂T

)

V,n

(dT )n +
(
∂S

∂V

)

T ,n

(dV )n (2.35)

Dividing both sides of Eq. (2.35) by dT , keeping the pressure p constant, we obtain

(
∂S

∂T

)

p,n

=
(
∂S

∂T

)

V,n

+
(
∂S

∂V

)

T ,n

(
∂V

∂T

)

p,n

Using the definitions of the heat capacities

Cp = T

(
∂S

∂T

)

p,n

, CV = T

(
∂S

∂T

)

V,n

and the first Maxwell relation, we obtain

1

T
Cp = 1

T
CV +

(
∂p

∂T

)

V,n

(
∂V

∂T

)

p,n

(2.36)

Now, consider the volume V to be a function of p, T , and n:

V = V (p, T , n)

then, the differential form of V for fixed n is given as

(dV )n =
(
∂V

∂p

)

T ,n

(dp)n +
(
∂V

∂T

)

p,n

(dT )n

If we divide both sides by dT and keep fixed V and n, we obtain

0 =
(
∂V

∂p

)

T ,n

(
∂p

∂T

)

V,n

+
(
∂V

∂T

)

p,n

or
(
∂p

∂T

)

V,n

= −
(
∂p

∂V

)

T ,n

(
∂V

∂T

)

p,n

(2.37)
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Substituting Eq. (2.37) into Eq. (2.36), we obtain

1

T
Cp = 1

T
CV −

(
∂p

∂V

)

T ,n

(
∂V

∂T

)

p,n

(
∂V

∂T

)

p,n

(2.38)

or

Cp − CV = −T

(
∂p

∂V

)

T ,n

[(
∂V

∂T

)

p,n

]2

(2.39)

Introducing the coefficient of thermal expansion as

α = 1

V

(
∂V

∂T

)

p,n

and the isothermal compressibility as

κT = − 1

V

(
∂V

∂p

)

T ,n

Eq. (2.39) can also be written as

Cp − CV = T V
α2

κT
(2.40)

This expression is very popular in relating the heat capacity with the coefficient of
thermal expansion and the isothermal compressibility.

Equation (2.40) can also be written in terms of the specific heat capacities as

cp − cV = T V

n

α2

κT

where n is the number of moles. For an ideal gas, pV = nRT , therefore

α = 1/T

and

κT = 1/p

Thus, we obtain

cp − cV = T V

n

1/T 2

1/p
= R

which is a well-known relation that has been derived for the ideal gas.
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Fig. 2.6 (a) A mnemonic diagram; (b) the diagram for the first Maxwell relation; (c) the diagram
for the second Maxwell relation

Note that the Maxwell relations can also be derived using the mnemonic diagram
shown in Fig. 2.6a. This diagram consists of sides labeled by four thermodynamic
potential functions flanked by their respective natural independent variables. Using
Fig. 2.6a, in the differential expression for each potential function in terms of the
physical variables the arrow pointing away from the variable implies of positive
sign, while an arrow pointing towards the variable involves negative sign. The
vertices of the diagram give Maxwell relations. For example, the graph shown in
Fig. 2.6b represents the first Maxwell relation, and a diagram of Fig. 2.6c represents
the second Maxwell relation.

Other Maxwell relations can also be derived, as also shown from the diagram
in Fig. 2.7. In particular, the following Maxwell relation can be derived using the
diagram in Fig. 2.7:

(
∂V

∂S

)

p,n

=
(
∂T

∂p

)

S,n

(2.41)

It is important to note that this relation can be derived using the differential form of
the enthalpy:

dH = V dp + T dS + μdn
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Fig. 2.7 A mnemonic
diagram the Maxwell relation(
∂V

∂S

)

p,n

=
(
∂T

∂p

)

S,n

From this equation, we can write

V =
(
∂H

∂p

)

S,n

T =
(
∂H

∂S

)

p,n

Taking the partial derivatives of both sides in each equation, we obtain

(
∂V

∂S

)

p,n

=
(

∂

∂S

(
∂H

∂p

)

S,n

)

p,n

(
∂T

∂p

)

S,n

=
(

∂

∂p

(
∂H

∂S

)

p,n

)

S,n

=
(

∂

∂S

(
∂H

∂p

)

S,n

)

p,n

Comparing these two expressions, it is easy to find that Eq. (2.41) holds. We call
this equation here as the third Maxwell relation. It should be mentioned that this
relation, Eq. (2.41), has less practical applications because it is very difficult to
control entropy during an experiment.

Another relation can be obtained using the mnemonic diagram shown in Fig. 2.8,
called here the fourth Maxwell relation:

(
∂T

∂V

)

S,n

= −
(
∂p

∂S

)

V,n

(2.42)

To derive this relation, the differential form of the internal energy E can be used:

dE = T dS − pdV + μdn

From here, we obtain

T =
(
∂E

∂S

)

V,n

p = −
(
∂E

∂V

)

S,n
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Fig. 2.8 A mnemonic
diagram the Maxwell relation(
∂T

∂V

)

S,n

= −
(
∂p

∂S

)

V,n

Taking the partial derivatives of the both sides of each equation, we can obtain

(
∂T

∂V

)

S,n

=
(

∂

∂V

(
∂E

∂S

)

V,n

)

S,n

(
∂p

∂S

)

V,n

= −
(

∂

∂S

(
∂E

∂V

)

S,n

)

V,n

= −
(

∂

∂V

(
∂E

∂S

)

V,n

)

S,n

It can be seen that the right-hand-sides of the both equations are equal, thus
equalizing the left-hand-sides, we obtain Eq. (2.42).

2.9 Extensive Functions

Consider the internal energy, which is an extensive quantity, and it depends on
entropy S and mechanical parameters X, which also are extensive. Therefore,

E(λS, λX) = λE(S,X) (2.43)

where λ is a real constant. This indicates that from mathematical point of view
E(S,X) is a homogeneous function of the first order of S and X. Let us denote

S′ = λS, X′ = λX

Then,

(
∂E(S′,X′)

∂λ

)

S,X
= E(S,X) (2.44)

Moreover, the differential form of E is

dE(S′,X′) =
(
∂E

∂X′

)

S′
· dX′ +

(
∂E

∂S′

)

X′
dS′
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Dividing both sides with dλ and keeping constant X and S, we get

(
∂E

∂λ

)

S,X
=

(
∂E

∂X′

)

S′
·
(
∂X′

∂λ

)

S,X
+

(
∂E

∂S′

)

X′

(
∂S′

∂λ

)

S,X
(2.45)

=
(
∂E

∂X′

)

S′
· X +

(
∂E

∂S′

)

X′
S

Combining Eq. (2.44) with Eq. (2.45), we obtain

E(S,X) =
(
∂E

∂X′

)

S′
· X +

(
∂E

∂S′

)

X′
S (2.46)

If we take the constant λ = 1, then

dX′ = dX, dS′ = dS

Thus, Eq. (2.46) can be written as

E(S,X) =
(
∂E

∂X

)

S

· X +
(
∂E

∂S

)

X
S (2.47)

This is also known as the Euler Theorem. From Eq. (2.47) we can further write that

E(S,X) = f · X + T S (2.48)

The differential form of Eq. (2.48) gives

dE(S,X) = df · X + f · dX + T dS + SdT (2.49)

On the other hand, we know that

dE(S,X) = T dS + f · dX

Thus, we obtain

df · X + SdT = 0 (2.50)

Replacing

df · X = −V dp +
r∑

i=1

nidμi
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into Eq. (2.50), we get

SdT − V dp +
r∑

i=1

nidμi = 0 (2.51)

which is also known as the equation of the Gibbs-Duhem.
In addition, using the Euler Theorem for the Gibbs free energy, we can obtain the

following:

G = E − T S + pV (2.52)

=
(
T S − pV +

r∑

i=1

μini

)
− T S + pV

=
r∑

i=1

μini

If the system has just one component, then

G = μn

or

μ = G

n

That is, for a system with one component, the chemical potential μ is the Gibbs free
energy per mol.

Equation (2.51) is the special case of the most general case

X(T , p, n1, · · · , nr ) =
r∑

i=1

xini (2.53)

where X is an extensive function of the intensive parameters T , p and xi partial
moles of the component i and ni is the number of moles of the component i. We
can write:

xi =
(
∂X
∂ni

)

T ,p,nj �=i

= xi(T , p, n1, · · · , nr ) (2.54)

Moreover, if T and p are constants, then using the Euler Theorem, X(T , p, n1, · · · ,
nr) is a homogeneous function of the first order of the number of moles, thus:

X(T , p, λn1, · · · , λnr) = λX(T , p, n1, · · · , nr ) (2.55)
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2.10 Intensive Functions

The intensive functions are homogeneous of the zeroth order of the extensive
parameters. For example, the pressure is an intensive quantity, if we consider it
as a function of S, V , n1, · · · , nr , we can write

p(λS, λV, λn1, · · · , λnr) = p(S, V, n1, · · · , nr)

which holds for every λ. Choosing λ to be

λ = 1∑r
i=1 ni

= 1

n

where n denotes the total number of moles, then

p = p(S/n, V/n, n1/n, · · · , nr/n) (2.56)

Denoting

xi = ni

n

the fraction of moles of the component i, then

p = p(S/n, V/n, x1, · · · , xr ) (2.57)

In addition, the fraction of moles are not independent, that is

r∑

i=1

xi = 1

Thus,

p = p(S/n, V/n, x1, · · · , xr−1, 1 − x1 − x2 − · · · − xr−1) (2.58)

While Eq. (2.55) indicates that 2 + r extensive parameters are necessary to
determine the value of an extensive parameter for a system in equilibrium, Eq. (2.58)
suggests that only 1 + r parameters are essential to deciding on the values of other
intensive parameters. Because the intensive properties are independent of the size
of the system implies this reduction of the degrees of freedom from 2 + r to 1 + r .
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2.11 Stability of Thermodynamic Systems

In the following, we will consider a heterogeneous system consisting of multiple
phases with multiple components in each phase. Each phase contains another
different subsystem. Also, a new partition of the extensive parameters is considered
between different phases. For example, since E is an extensive quantity, the internal
energy is

E =
ν∑

α=1

E(α) (2.59)

Here, ν is the total number of the phases. If we make a new partition of the energy
between the phases, then changes on Eα are such that the total internal energy of
the system E remains constant. Note that here we have neglected the energy term
related to the interface surface, which is just an approximation because the surface
internal energy term is of the order N2/3, where N is the total number of particles
in the phase.

First, we will observe the entropy representation, then the total entropy is

S =
ν∑

α=1

S(α) (2.60)

Similarly, the volume is

V =
ν∑

α=1

V (α) (2.61)

and the number of moles ni of the ith component is

ni =
ν∑

α=1

n
(α)
i (2.62)

From the principles of the thermodynamic equilibrium state, the stationarity of
the equilibrium state requires that

(δE)S,V,n = 0

and stability

(δ2E)S,V,n > 0
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From Eq. (2.60), we can calculate δE as a variational displacement of the first order
with respect to E:

δE =
ν∑

α=1

δE(α) (2.63)

=
ν∑

α=1

[
T (α)δS(α) − p(α)δV (α) +

r∑

r=1

μ
(α)
i δn

(α)
i

]

From the condition of the equilibrium state

(δE)S,V,n ≥ 0

implies that from all the processes, we consider those processes that partition S(α),
V (α) and n

(α)
i by keeping the total S, V , and ni constants, which means that

ν∑

α=1

δS(α) = 0 (2.64)

ν∑

α=1

δV (α) = 0

ν∑

α=1

δn
(α)
i = 0, (i = 1, 2, · · · , r)

For a system with two phases, ν = 2, relations in Eq. (2.64) reduce to

δS(1) = −δS(2) (2.65)

δV (1) = −δV (2)

δn
(1)
i = −δn

(2)
i , (i = 1, 2, · · · , r)

Combining Eq. (2.63) with Eq. (2.65), we get

(δE)S,V,n =
(
T (1) − T (2)

)
δS(1) −

(
p(1) − p(2)

)
δV (1) (2.66)

+
r∑

r=1

(
μ
(1)
i − μ

(2)
i

)
δn

(1)
i

For the condition of the equilibrium state (δE)S,V,n ≥ 0 to be satisfied for every

infinitesimal variations δS(1), δV (1), and δn
(1)
i , which could be either positive or

negative, we must have:
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T (1) = T (2) (2.67)

p(1) = p(2)

μ
(1)
i = μ

(2)
i , (i = 1, 2, · · · , r)

which guarantees that (δE)S,V,n = 0 for any infinitesimal displacement from the
equilibrium state. The first is called the thermal equilibrium, the second one is the
mechanical equilibrium, and the last one is the mass equilibrium.

Let us consider the case when all the infinitesimal displacements from the
equilibrium state have only one sign, such as positive. Then, the conditions of the
equilibrium will be expressed as inequalities instead of equality:

T (1) ≥ T (2) (2.68)

p(1) ≤ p(2)

μ
(1)
i ≥ μ

(2)
i , (i = 1, 2, · · · , r)

We can also write the conditions of the equilibrium for the fluctuations about any
number of the phases:

T (1) = T (2) = T (3) = · · · (2.69)

p(1) = p(2) = p(3) = · · ·
μ
(1)
i = μ

(2)
i = μ

(3)
i = · · · , (i = 1, 2, · · · , r)

Eq. (2.69) gives an ensemble of equilibrium criteria, which are at the same time
necessary and sufficient conditions for equilibrium.

Consider a system composed of two subsystems as shown in Fig. 2.9. Let us
furthermore suppose that the system initially is in the state with μ(1) > μ(2).
Transfer of the mass will bring the system in an equilibrium final state, such that:

μ
(1)
final = μ

(2)
final

Fig. 2.9 Illustration of a
composed system
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If we assume that there is no work applied on the system and there is no transfer of
the heat on the system from the surroundings, then for an equilibrium process:

ΔS > 0

Suppose that the deviations from the equilibrium are small, then for a system with
one component we can write

0 = ΔE = TΔS − pΔV + μΔn

If we assume that the total volume does not change, then ΔV = 0, and we obtain

ΔS = −μ(1)

T
Δn(1) − μ(2)

T
Δn(2) (2.70)

= −
(
μ(1)

T
− μ(2)

T

)
Δn(1)

where Δn(1) = −Δn(2) is the change in the number of moles in the subsystem (1)
during this process, assuming that the total number of moles remains constant.

Therefore, since μ(1) > μ(2), and ΔS > 0 implies that Δn(1) < 0. That is
the mass transfers from the subsystem with the largest μ to the subsystem with
smaller μ. Thus, we can say that the gradient in μ/T creates a transfer of mass. As a
result, −∇ (μ/T ) is a general force. Similarly, −∇ (1/T ) is a general force causing
transfer of the heat. In general, the gradient of the intensive parameters causing
the transfer of their respective conjugate parameters, are called the thermodynamic
fields.

As we mentioned, the condition for a stable equilibrium state is given as the
following for all variations far from the subspace of equilibrium states:

(ΔE)S,V,n > 0

Thus, for infinitesimal deviations

(δE)S,V,n ≥ 0

Above we found out that for unconstrained systems, for which the internal extensive
parameters can change in both directions, either positive or negative,

(δE)S,V,n = 0 (2.71)

Therefore, the variation close to the equilibrium state can be written as

(ΔE)S,V,n =
(
δ2E

)

S,V,n
+

(
δ3E

)

S,V,n
+ · · · (2.72)

where it is supposed that Eq. (2.71) is satisfied.
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Since the terms of the second order will dominate for infinitesimal deviations,
we can write

(
δ2E

)

S,V,n
≥ 0 (2.73)

which is called the stability condition of the thermodynamic equilibrium.
If the inequality given by Eq. (2.73) is satisfied, the system is stable concerning

small fluctuations from the equilibrium state. In other words, after the small
fluctuations apply to the system, it will return to the previous equilibrium state.
If the following equality is satisfied:

(
δ2E

)

S,V,n
= 0 (2.74)

the thermodynamic stability is unpredictable, and the variations of higher order are
needed to predict it. If

(
δ2E

)

S,V,n
< 0 (2.75)

we can say that the system is not stable and the smallest fluctuation or disturbance
will cause the system to change from the macroscopic point of view.

Consider the example of a composed system of two subsystems, namely (1) and
(2), as shown in Fig. 2.10. Since the total entropy of the system is constant, then
fluctuations for this system are:

δS = 0 = δS(1) + δS(2)

or

δS(1) = −δS(2) (2.76)

In addition, we assume that the fluctuations of the volume and number of moles in
each subsystem are zero, that is

δV (1) = δV (2) = δn(1) = δn(2) = 0

Fig. 2.10 Illustration of a
composed system
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Then,

(
δ2E

)

S,V,n
=

(
δ2E

)(1)
V ,n

+
(
δ2E

)(2)
V ,n

(2.77)

= 1

2

(
∂2E

∂S2

)(1)

V ,n

(
δS(1)

)2

+ 1

2

(
∂2E

∂S2

)(2)

V ,n

(
δS(2)

)2

In Eq. (2.77), the subscripts (1) and (2) represent the derivatives calculated in
equilibrium for the subsystems (1) and (2). Using Eq. (2.76) and the definition of
the temperature

(
∂2E

∂S2

)

V,n

=
(
∂T

∂S

)

V,n

= T

CV

we obtain

(
δ2E

)

S,V,n
= 1

2

[
T (1)

C
(1)
V

+ T (2)

C
(2)
V

](
δS(1)

)2
(2.78)

= 1

2
T

[
1

C
(1)
V

+ 1

C
(2)
V

](
δS(1)

)2

where we have used the thermal equilibrium condition: T (1) = T (2) = T . Since,(
δ2E

)
S,V,n

≥ 0, then we get

T

[
1

C
(1)
V

+ 1

C
(2)
V

]
≥ 0 (2.79)

For any division of the entire system into two subsystems (1) and (2), Eq. (2.79)
implies that

T/CV ≥ 0

or

CV ≥ 0 (2.80)

Therefore, if the condition given by Eq. (2.80) is satisfied, then the system is in
stable thermodynamic equilibrium. Otherwise, if the two subsystems (1) and (2) are
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in thermal contact with each-other, but not yet in equilibrium (i.e., T (1) �= T (2)),
then the gradient in T will cause a transfer of heat from the subsystem with higher
T to the subsystem with lower T . If CV < 0, then the direction of the heat transfer
will cause an increase in the gradient of T , and the system will not be able to find the
equilibrium state, which also gives a physical explanation of the criteria of stability.
If this criterion is satisfied, then the spontaneous processes created as a result of
a deviation from the equilibrium will be in that direction that will establish the
equilibrium state.

Let us consider in the following the Helmholtz free energy principles of
thermodynamic equilibrium:

(ΔF)T,V,n > 0 (2.81)

(δF )T ,V,n = 0
(
δ2F

)

T ,V,n
≥ 0

These principles of variations apply to the experiments in which internal constraints
imply changes on the internal extensive parameters, but the total internal extensive
parameters remain constants. Since T is an intensive parameter, then it is not
allowed to consider fluctuations for T .

Consider again the system shown in Fig. 2.10. The principles of variations can
be applied for these variations:

δV = 0 = δV (1) + δV (2) (2.82)

δn(1) = δn(2) = 0

The second order variation of the Helmholtz free energy F is

(
δ2F

)

T ,V,n
= 1

2

[(
∂2F

∂V 2

)(1)

T ,n

(
δV (1)

)2 +
(
∂2F

∂V 2

)(2)

T ,n

(
δV (2)

)2
]

(2.83)

= 1

2

(
δV (1)

)2
[(

∂2F

∂V 2

)(1)

T ,n

+
(
∂2F

∂V 2

)(2)

T ,n

]

where δV (1) = −δV (2) is used derived by Eq. (2.82). From the differential form of
F (see Eq. (2.23)) and Eq. (2.24), we obtain

(
∂p

∂V

)

T ,n

= −
(
∂2F

∂V 2

)

T ,n

After replacing this expression into Eq. (2.83) and considering that
(
δ2F

)
T ,V,n

≥ 0,
we obtain
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(
δ2F

)

T ,V,n
= −1

2

(
δV (1)

)2
[(

∂p

∂V

)(1)

T ,n

+
(
∂p

∂V

)(2)

T ,n

]
≥ 0 (2.84)

Or, since the partition into two subsystems is arbitrary, every term inside the
parentheses of Eq. (2.84) has the same sign, thus

−
(
∂p

∂V

)

T ,n

≥ 0 (2.85)

Note that the coefficient of the isothermal compressibility is given as

κT = − 1

V

(
∂V

∂p

)

T ,n

Combining this equation with Eq. (2.85), we obtain that

κT ≥ 0 (2.86)

This is considered as another condition for a state of system to be in the stable
thermodynamic equilibrium. Therefore, increasing thermally the pressure of a
system in stable equilibrium state, implies that its volume decreases.

Similarly, if the second order variation vanishes (i.e.,
(
δ2F

)
T ,V,n

= 0), then we
have to look at higher order variation terms, that is

(
δ3F

)

T ,V,n
≥ 0

and consider infinitesimal deviations from equilibrium state.
Let us look now at a general principle of the criteria of thermodynamic stability.

For that, consider Ψ being one of the thermodynamic potential functions

Ψ (X1, X2, · · · , Xr, Ir+1, Ir+2, · · · , In)

where X1, X2, · · · , Xr are extensive parameters and Ir+1, Ir+2, · · · , In intensive
parameters. The differential form of Ψ is given as

dΨ =
r∑

i=1

IidXi −
n∑

i=r+1

XidIi

Then, the criteria of the stable thermodynamic equilibrium are given as

(
∂Ii

∂Xi

)

Xj �=i ,Ir+1,··· ,In
≥ 0 (2.87)
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That is, the criteria of the stable thermodynamic equilibrium are formulated in
terms of the derivatives of the internal parameters with respect to their conjugated
extensive parameters.

For example, If Ψ is the internal energy of the system, from the differential form
of the internal energy of a system of r components:

dE = T dS − pdV +
r∑

i=1

μidni (2.88)

we can see that the extensive parameters are: S, V , and ni (for i = 1, 2, · · · , r)
and their respective conjugated intensive parameters are: T , −p, and μi (for i =
1, 2, · · · , r). Therefore, the criteria of the stable thermodynamic equilibrium states
can be written as the following:

(
∂T

∂S

)

V,n

≥ 0 (2.89)

−
(
∂p

∂V

)

S,n

≥ 0

(
∂μi

∂ni

)

S,V,nj �=i

≥ 0, i = 1, 2, · · · , r

We can also consider other thermodynamic potential functions, for example the
free energy of Helmholtz F . From Eq. (2.23), we can see that

F = F(T , V, n1, · · · , nr )
In this case, the criteria of the stable thermodynamic equilibrium states can be
formulated as the following:

−
(
∂p

∂V

)

T ,n

≥ 0 (2.90)

(
∂μi

∂ni

)

T ,V,nj �=i

≥ 0, i = 1, 2, · · · , r

Similarly, the criteria for the stable thermodynamic equilibrium for enthalpy
H(S, p, n), with a differential form given by Eq. (2.26), can be formulated as

(
∂T

∂S

)

p,n

≥ 0 (2.91)

(
∂μi

∂ni

)

S,p,nj �=i

≥ 0, i = 1, 2, · · · , r
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Moreover, the same criteria for the stable thermodynamic equilibrium for Gibbs
free energy G(T , p, n), with a differential form given by Eq. (2.28), can be
formulated as

(
∂μi

∂ni

)

T ,p,nj �=i

≥ 0, i = 1, 2, · · · , r (2.92)

It is worth noting that from the second law, the stability of the equilibrium state
does not imply anything regarding the sign of, for example,

(
∂p

∂T

)

V,n

,

(
∂μi

∂nj

)

T ,V,ni �=j

and so on, since they do not represent the derivatives of the intensive parameters
related to respective conjugated extensive parameters.



Chapter 3
Principles of Statistical Mechanics

In this chapter, we will describe some fundamental topics of thermodynamics and
statistical mechanics. Furthermore, we will discuss the energy or particle number
fluctuations in different statistical ensembles and their differences.

For further reading on the statistical mechanics, one should consider the books
by Gibbs (1902), Hansen and McDonald (1986), and McQuarrie (1976, 2000).

3.1 Systems

In statistical mechanics systems play the same role as particles in kinetic theory. The
system has a very general concept in statistical mechanics, and it may include any
physical object.

For example, we can mention the galaxy, a planet, crystal and its fundamental
mode of vibration, an atom in a crystal, an electron of the atom, and a quantum state
in which that electron could reside.

Statistical mechanics pays special attention to systems that couple only weakly
to the rest of the universe. With other words, in statistical mechanics, the focus is
the systems whose relevant internal evolution timescales, τint , are short compared
with the external timescales, τext , on which they exchange energy, entropy, particles,
and so on, with their surrounding environments. These systems are also called semi-
closed. In contrast, a system for which in the idealized limit external interactions
are completely ignored, is called closed system.

The statistical mechanics formalism for dealing with closed systems relies on the
assumption τint /τext � 1. Therefore, it depends on the two length scale expansions,
τint and τext .

If a semi-closed classical system does not interact with the external universe, then
it is considered a closed system, and Hamiltonian dynamics (Poole 2001) describe
its time evolution. In this textbook we are discussing the classical systems, therefore,
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within this context, we can determine the phase space as the 2f -dimensional space
such that the coordinates determine every point in this space:

(q1, · · · ,qN,p1, · · · ,pN)

where q = {qi}fi=1 are the generalized coordinates and p = {pi}fi=1 are generalized
conjugated momenta. Here, f denotes the number of degrees of freedom related to
the number of particles N of a system, f = 3N , assuming that each particle is in
a three-dimensional space. Each point in this phase space corresponds to one of the
microscopic states of the system.

The time evolution of p and q is governed by Hamilton’s equations of motion (as
discussed in Chap. 1):

dqi

dt
= ∂H

∂pi

(3.1)

dpi

dt
= −∂H

∂qi
, i = 1, · · · , f

where H(q,p) is the Hamiltonian of system. Here, we have considered that the
Hamiltonian does not depend explicitly on time t , because it is assumed dealing
with closed systems. In general, some physical systems, such as those with strong
internal dissipation, are not described by Hamiltonian dynamics (Poole 2001).

The differential equations given by Eq. (3.1) can be solved by determining first
the initial conditions. These conditions define a point in the phase space of the
system. The motion of this phase point will determine the microscopic state of the
system at any time t . The path of phase point in microscopic state space is often
called trajectory, as mentioned in Chap. 1.

Note that for a closed system the energy is constant and equal to Hamiltonian:

H(q,p) = E

Thus, the orbit of this motion corresponds to a constant energy surface. Other
parameters that we can fix include the volume V , temperature T , pressure p, the
chemical potential μ, and the number of particles N .

3.2 Ensembles

While the kinetic theory aims to study a system of a vast number of particles
statistically, the statistical mechanics aims to study statistically an ensemble of a vast
number of systems. Note that the concept of an ensemble in statistical mechanics is
a theoretical concept. That is, it forms a statistical argument for describing a thought
experiment. Hence, there can be different ways of thinking about an ensemble.
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Often, it is required that an ensemble is formed by systems which are closed and
identical, in the sense that systems have identically the same number of degrees of
freedom and described by Hamiltonian with identically the same functional forms
H(q,p), and have the same volume V and total internal energy E. However, the
generalized coordinates q and conjugated momenta p do not need to be the same at
any time t , and hence, the systems are not all at the same state at time t . According
to the Boltzmann, such a theoretically conceptual ensemble of identical closed
systems evolves until reaches the so-called statistical equilibrium, and it is called
microcanonical ensemble.

In practice, we often deal with ensembles that exchange energy in the form
of heat with the surrounding environment such that the internal energy of each
ensemble’s system can fluctuate. Such a surrounding environment is also called
heat bath. The heat bath is considered to have a much larger number of degrees of
freedom, and so a far higher heat capacity than each system of the ensemble. If the
statistical equilibrium is obtained, then the ensemble is called canonical ensemble.

If the systems of the ensemble can also exchange volume with surrounding
as well as energy, then if the statistical equilibrium is reached, this ensemble is
called Gibbs or isothermal-isobaric ensemble. Another often described ensemble
is grand canonical ensemble in which each ensemble’s system exchange energy
and particles, but not volume, with its surrounding environment. In this chapter,
we will also describe another ensemble, where the system exchanges energy,
particles, and volume with the surrounding environment, keeping in this way
constant the chemical potential μ, pressure p and temperature T , which is called
grand isothermal-isobaric ensemble.

Like in kinetic theory, where we describe the statistical properties of a system
by the distribution function N (t,q,p), which gives the number of particles per unit
volume of 6N -dimensional phase space, in the statistical mechanics, the properties
of the ensemble are statistically described by a distribution function which equals
the number of systems per unit volume in 2f -dimensional phase space. Here,
we will introduce all these distribution functions mathematically applied to each
ensemble.

Statistical mechanics assumes that if we follow one trajectory for a very long
time, the system will go through all possible microscopic states and it will eventually
come very close to the initial point imposed on the system. In such case, if we
perform, as the system moves, a set of T measurements on the system, then an
observable property A will have a value given as the following:

AT = 1

T

T∑

t=1

A(t)

Here, A(t) is the value of A at the t measurement in a short time interval during
which system remains in the same microscopic state. If we denote n the total number
of states visited during a measurement time interval, then the sum can also be written
as
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AT =
n∑

i=1

Ti

T
Ai

Ti is the number of observations of the system in the state i during T measurements,

and Ai is the value of quantity A in this state. By definition,
Ti

T
gives the probability,

pi , of visiting the state i during the measurement time interval. Therefore, we can
write

AT =
n∑

i=1

piAi ≡ 〈A〉 (3.2)

Here, 〈A〉 represents the so-called ensemble average, and it characterizes an
operation for calculation of the average value of any physical property of a system.
That also gives a new meaning for the concept of an ensemble as a set of all possible
microscopic states which characterize the macroscopic system under conditions for
which it is determined. For example, the microcanonical ensemble is the set of all
microscopic states with constant energy E, number of particles N and volume V ;
the canonical ensemble is the set of all microscopic states with constant temperature
T , number of particles N and volume V . Thus, the microcanonical ensemble is
suitable for describing an isolated system, and the canonical ensemble is suitable
for describing a closed system in thermal contact with a heat bath.

Conceptually, the time average AT uses the classical mechanics description of
the system as a collection of particles moving under physics laws, for example using
Hamilton’s equations of motion to obtain a trajectory. If the observation time of the
measurements is very long, then eventually this trajectory represents all possible
microscopic states of a system in phase space. Therefore, the time average is equal
to the ensemble average. Thus, the central assumption of statistical mechanics is
that the value of an observed quantity corresponds to the ensemble average.

Equivalence between the ensemble and time average is not such apparent as
it looks, because its main assumption is that during the observation time interval
system has visited all possible microscopic states, which is not that simple to verify.
Dynamical systems obeying to this equivalence are called ergodic. Practically, we
assume that the ergodic condition is satisfied for all systems in nature. For small
size molecular systems, the ergodic condition is considered to be satisfied based on
their dynamical nature of interactions between molecules from molecular kinetic
theories.

However, this equivalence can be satisfied not only when the observation
time is too long, but also when the value is an average over a vast number of
independent observations. Both these approaches are equivalent if with “long time”
we understand the time that is longer than the relaxation time, τ , of the system.
For a molecular system, the relaxation time corresponds to the time that the system
has lost all correlations with its initial conditions. In such case, if a measurement is
performed for some time T such that T = T τ , then it corresponds to T independent
measurements.
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Often for macroscopic systems, the measurements are performed for relatively
short timescales. The ensemble average is also applicable to these cases. However,
for these cases, this could be understood as the partition of the macroscopic system
into a set of smaller subsystems which are macroscopic as well, in the sense
that molecular behavior in each subsystem is independent on that of neighboring
subsystems. In other words, each of these subsystems is large enough such that its
distance from all other subsystems is larger than the correlation length, and hence,
the subsystems can be considered as macroscopic. Then, the set of subsystems can
characterize an ensemble, and a measurement of the entire macroscopic system
is equivalent to the set of independent measurements in each subsystem, which
corresponds to an ensemble average.

3.3 Microcanonical Partition Function

As mentioned above, the main assumption governing the statistical mechanics is that
during a measurement all possible microscopic states are observed, and the value of
some observing quantity is an average over all these microscopic states. Therefore, it
is necessary to characterize the distribution probability of these microscopic states.

For a microcanonical ensemble in which each isolated system of the ensemble
has a constant energy E, volume V and the number of particles N , the assumption
made can be postulated as:

All microscopic states are equally possible in a thermodynamic equilibrium macroscopic
state.

In other words, the thermodynamic equilibrium state corresponds to the most
disordered situation, i.e., the distribution of microscopic states with the same E,
V , and N is completely uniform.

We denote with Ω(E,V,N) the number of microscopic states characterized by
N particles, volume V and energy in the interval (E, E − δE). The value of δE

characterizes the uncertainty of determining E of the macroscopic system for some
of E values. If δE = 0, then Ω(E,V,N) would be a discontinuous function of
E, and for δE �= 0, Ω(E,V,N) will be the degeneracy of energy level E. For a
macroscopic system, the energy levels often are distributed very close to each other,
such that they can be considered continuously distributed. In the limit of continuous
distribution for Ω(E,V,N), we can denote with

Ω(E,V,N) dE

the number of energy states with E in the interval between E and E + dE. In this
case, Ω(E,V,N) determines the so-called density of states.
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Based on the above statistical assumption, the probability of observing a
microscopic state n of the ensemble for a system in equilibrium is given by

Pn =
⎧
⎨

⎩

1

Ω(E,V,N)
, for En = E

0, for En �= E

(3.3)

which indicates that Pn is equal for all microscopic states.
By definition, the entropy is defined as the following quantity:

S = kB lnΩ(E,V,N) (3.4)

where kB is an arbitrary constant known as the Boltzmann’s constant with value:

kB = 1.38 × 10−16 erg/deg

The quantity S, determined by Eq. (3.4), satisfies the extensive property. For
instance, imagine we divide the system into two independent subsystems, let’s say
I and II , with, respectively, number of states ΩI and ΩII . Then, the joint density
of states will be given by

Ω = ΩIΩII

and the entropy of the entire systems is

SI+II = kB ln (ΩIΩII ) = kB lnΩI + kB lnΩII = SI + SII

which indicates that S is additive.
Now, let us show that this definition of the entropy is also in agreement with the

variation principle of the second law of thermodynamics. For that, we are going to
assume that the system with constant E, N and V partitions into two subsystems
with, respectively, NI , NII ; VI , VII ; and EI , EII , such that

N = NI +NII (3.5)

V = VI + VII

E = EI + EII

Each particular partition of the system in this way is a subset of all possible states.
Therefore, the number of states in this partition, Ω(E,V,N; internal condition) is
smaller than the total number of states, Ω(E,V,N):

Ω(E,V,N) > Ω(E, V,N; internal condition)
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Since the logarithm function is a monotonically increasing function, we can write

S(E, V,N) > S(E, V,N; internal condition)

This inequality is the second law of thermodynamics seen in Chap. 2. From the
statistical mechanics’ point of view, this inequality indicates that the maximum
of entropy corresponds to the maximum disorder, and hence, more microscopic
disorder, larger the entropy.

The temperature can also be determined as

1

T
=

(
∂S

∂E

)

N,V

(3.6)

From here, we can get

β = 1

kBT
=

(
∂ lnΩ

∂E

)

N,V

(3.7)

It can be seen that since Ω is a monotonically increasing function of E, then lnΩ

also is a monotonically increasing function of E. This satisfies the thermodynamic
condition that the temperature is a positive quantity, T > 0.

3.4 Canonical Partition Function

The partition function describes the statistical properties of a system in thermody-
namic equilibrium, which contains all of the essential information about the system
under consideration. It is a function of the macroscopic properties of the system,
such as the temperature, T , number of particles, N , and volume, V . The canonical
partition function of a classical system has the following general form:

Q =
∑

n

e−En/kBT , (3.8)

where n (n = 1, 2, 3, · · · ) labels exact (microscopic) states occupied by the system,
and En is the total energy of the system in the state n. The term e−En/kBT is known
as the Boltzmann’s factor.

If the system has multiple quantum states n sharing the same En, then the
energy levels of the system are degenerate. The partition function is a sum of the
contributions from energy levels as the following:

Q =
∑

ν

gνe
−Eν/kBT , (3.9)
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where gν is the degeneracy factor characterizing the number of quantum states ν

with the same energy level: Eν = En. This is the case of a quantum statistical
mechanics system, such as a physical system inside a finite-sized box that is
characterized by a discrete set of energy eigenstates defining the states n. In
classical statistical mechanics, however, it is not exactly correct to express the
partition function in terms of a summation of the discrete terms. Instead, in classical
mechanics, the position (r) and momentum (p) variables of a particle can vary
continuously. Hence, the microscopic states are actually uncountable. In this case,
the integral replaced the sum in the definition of the partition function. Thus, the
partition function of a gas of N identical classical particles is

Q = 1

N !h3N
(3.10)

×
∫

exp [−βH(p1, · · · ,pN, r1, · · · , rN)] d3p1 · · · d3pNd3r1 · · · d3rN,

where β = 1/kBT , ri is i-th particle position vector, pi is its conjugated momentum
vector, and H is the classical Hamiltonian, which depends on the positions and
momenta. The constant factor (h3N ) in the denominator makes Q to be a quantity
without dimensions. Here, h denotes the Planck’s constant:

h = 6.622477 × 10−34 kg · m2/s

The other factor, N !, takes into account that the particles are actually identical
particles. This ensures that no “over-count” of the number of the microscopic states
occurs. While this may seem like an unusual requirement, it is actually necessary
to preserve the existence of a thermodynamic limit for such systems, known also as
the Gibbs paradox (Gibbs 1902).

There are a few examples where it is possible to calculate the partition function
analytically for some vast systems of interacting particles. In general, it can not be
evaluated precisely. Even enumerating the terms in partition function on a computer
can be an impossible task. For instance, consider a system of only 10,000 interacting
particles, which is a very small fraction of the Avogadro’s number (6.022 × 1023

particles/mol), with only two possible states per particle, the partition function
would contain 210,000 terms, which can be quite impossible to store even in the
most powerful computers in nowadays.

The partition function depends on the temperature T and the microscopic
state energies En (n = 1, 2, · · · ). Other thermodynamic variables determine the
microscopic state energies, such as the number of particles N , the volume V , and the
microscopic quantities, such as the mass of constituent particles. This dependence
on microscopic variables is the main goal of statistical mechanics. Using a particular
model of the microscopic constituents of a system, such as molecules and atoms,
we can calculate the microscopic state energies, and thus the partition function.
Knowing the partition function allows us to calculate all the other thermodynamic
properties of the system. In particular, the partition function can relate to the
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thermodynamic properties because it is related to a fundamental statistical property,
such as the probability Pn that the system occupies microscopic state n given as

Pn = 1

Q
exp (−βEn) , (3.11)

Here, the partition function, Q, represents a normalization constant.

3.5 Entropy, Free Energy and Internal Energy

The partition function can be related to different thermodynamic quantities, such as
the entropy, free energy, and internal energy.

The entropy of the canonical ensemble is defined in statistical mechanics by

S = −kB
∑

n

Pn lnPn (3.12)

where Pn is given by Eq. (3.11). Substituting Eq. (3.11) into Eq. (3.12) we obtain

T S = −kBT
∑

n

1

Q
e−βEn (− lnQ− βEn) (3.13)

= kBT
∑

n

lnQ

Q
e−βEn + 1

Q

∑

n

Ene
−βEn

= 1

β
lnQ− ∂ lnQ

∂β

The Helmholtz free energy for a canonical ensemble is determined by

F = −kBT lnQ (3.14)

This relation is introduced by Callen (1985) and it provides a relationship between
the statistical mechanics and thermodynamics. Indeed, the expression in Eq. (3.14)
can also be obtained from the free energy using

S = −
(
∂F

∂T

)

V,N

(3.15)

The free energy of the system takes us to the internal energy using the following
relation:

U = −T 2 ∂

∂T

(
F

T

)
(3.16)
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This expression also implies that knowing the internal energy of a system, the free
energy can be obtained by the integration, if we assume that we know already the
free energy at a reference temperature. This is particularly important for computer
simulations where the free energy is not directly calculated but rather the internal
energy. Then, the free energy can be calculated by integration:

Δ

(
F

T

)
= F(T )

T
− F(T0)

T0
=

T∫

T0

U(T ) d(
1

T
).

Using Eq. (3.16), we can easily obtain an expression for the internal energy in terms
of the partition function:

U = −∂ lnQ

∂β
(3.17)

where the following relation

dT = −kBT
2dβ

is used, knowing that

β = 1

kBT

If the microscopic state energies depend on a parameter λ according to

En = E(0)
n + λAn, (3.18)

where An is the value of A at microscopic state n and E
(0)
n is the value of reference

energy at microscopic state n.
Then, the expected value of A is calculated as the following:

〈A〉 =
∑

n

AnPn (3.19)

=
∑

n

An

1

Qλ

exp (−βEn)

= − 1

Qλβ

∑

n

∂

∂λ
exp (−βEn)

= − 1

β

[
1

Qλ

∂

∂λ

∑

n

exp (−βEn)

]
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= − 1

β

[
1

Qλ

∂

∂λ
Qλ

]

= − 1

β

∂ lnQλ

∂λ
.

This procedure provides a method for calculating the expected values of many
microscopic quantities. We add the quantity artificially to the microscopic state
energies (or to the Hamiltonian for the isolated systems), calculate the new partition
function and expected value. For this, the expression given by Eq. (3.19) can be
rewritten as:

〈A〉 =
∑

n

AnPn (3.20)

=
∑

n

An

1

Qλ

exp (−βEn)

= 1

Qλ

∑

n

(
∂En

∂λ

)
exp (−βEn)

= 〈∂En

∂λ
〉λ

where 〈∂En

∂λ
〉λ represents the expected value of derivative of En (or Hamiltonian)

with respect to λ for the new partition function.

3.6 Thermodynamic Potentials

As we have seen, the internal energy depends on the extensive variables, such
as entropy S, volume V , number of particles N , and so on. In some cases, it
is appropriate to replace some of these variables with their conjugated intensive
variables. For this purpose, additional thermodynamic potentials can be defined
using the Legendre transformations of the internal energy as described in Chap. 2:

F = U − T S , (3.21)

H = U + pV , (3.22)

G = U − T S + pV , (3.23)

where F is the Helmholtz free energy, H is the enthalpy, and G is the Gibbs free
energy. The Helmholtz free energy F is particularly important because it has a
minimum value in equilibrium for N , T and V held fixed. On the other hand, G
has a minimum value in the case when N , T and p are held fixed. In addition,
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the difference in free energies between two states does not depend on the path
connecting these states. This means, two different paths connecting points 1 and
2, have the same difference on the free energy:

F2 − F1 =
∫

path I

dF =
∫

path II

dF. (3.24)

3.7 Generalized Ensembles

Consider a system with x = {x1, x2, · · · } a vector of mechanical extensive variables
and f the corresponding conjugated intensive variables vector. Now imagine a
system in thermodynamic equilibrium in which both E and x can fluctuate. This
system can be considered as a part of an isolated composite system in which the
other part can be viewed as a big reservoir for both E and x (see also Fig. 3.1).
Both, the energy En and xn fluctuate because the system is in contact with the bath,
but E = Eb+En and x = xb+ xn are constant. If the system is in one definite state
n, then the density of states of the microscopic states accessible from the system and
the bath is:

Ω(Eb, xb) = Ω(E − En)Ω(x − xn) ,

where we have assumed that fluctuations of the energy and extensive parameter x
are independent.

The probability observing the system in a microscopic state n is given by

Pn ∝ Ω(E − En, x − xn)

= Ω(E − En)Ω(x − xn)

= exp (ln (Ω(E − En)Ω(x − xn)))

= exp (ln (Ω(E − En))) exp (ln (Ω(x − xn)))

Fig. 3.1 Illustration of a
system immersed in a bath
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Now we can express ln (Ω(E − En)) and ln (Ω(x − xn)) according to Taylor series
for En � E and xn � x:

ln (Ω(E − En)) = lnΩ(E)− En

d lnΩ

dE
+ · · · ≈ lnΩ(E)− βEn , (3.25)

ln (Ω(x − xn)) = lnΩ(x)− xn · d lnΩ

dx
+ · · · ≈ lnΩ(x)− f · xn , (3.26)

where

β =
(
∂ lnΩ

∂E

)

x
, (3.27)

fi =
(
∂ lnΩ

∂xi

)

E,xj �=i

. (3.28)

Finally, we can write:

Pn ∝ exp (−βEn − f · xn) , (3.29)

where the proportionality constant is independent on the particular state of the
system and it is determined from the normalization condition:

∑

n

Pn = 1 .

Hence,

Pn = Ξ−1 exp (−βEn − f · xn) , (3.30)

where

Ξ =
∑

n

exp (−βEn − f · xn) , (3.31)

are the probability distribution and partition function of the generalized ensemble,
respectively. Thermodynamic values of E and xi are given through ensemble
averages:

〈E〉 =
∑

n

PnEn = −
(
∂ lnΞ

∂β

)

f,x
, (3.32)

〈xi〉 =
∑

n

Pnxi,n = −
(
∂ lnΞ

∂fi

)

T ,E,xj �=i

(3.33)
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3.8 Isothermal-Isobaric Ensemble

An example of the generalized canonical ensemble is the so-called isothermal-
isobaric ensemble or Gibbs ensemble. In the isothermal-isobaric ensemble, the
temperature T , pressure p, and the number of particles N are held fixed, but both,
the energy E and volume V are allowed fluctuating. The conjugated fields that
control these fluctuations are T (or β) and βp, respectively.

We denote with n the microscopic state of the system at volume Vn and energy
En, then from Eqs. (3.30) and (3.31) we get

Pn = Ξ−1 exp (−βEn − βpVn) , (3.34)

where

Ξ =
∑

n

exp (−βEn − βpVn) . (3.35)

Using the Gibbs formula for the entropy

S = −kB
∑

n

Pn lnPn

= −kB
∑

n

Pn [− lnΞ − βEn − βpVn]

= −kB [− lnΞ − β〈E〉 − βp〈V 〉] .

This expression can also be written as:

− kBT lnΞ = 〈E〉 − T S + p〈V 〉 , (3.36)

which can be compared with the formula for Gibbs free energy: G = E−T S+pV .
From this comparison we obtain

G = −kBT lnΞ = G(N,p, T ) (3.37)

Thus, it can be seen that Gibbs free energy G is a natural function of macroscopic
variables of the system, namely N , p, and T .

3.9 Grand Canonical Ensemble

Another very useful application of generalized ensemble is grand canonical ensem-
ble. This ensemble includes the set of all microscopic states of an open system at
constant volume V , chemical potential μ, and temperature T . Both, the energy and
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number of particles are allowed fluctuating, and the conjugated fields that control
the magnitude of these fluctuations are β and −βμ, respectively. Thus, if we denote
with n the microscopic state with Nn particles and energy En, from Eqs. (3.30)
and (3.31), we get

Pn = Ξ−1 exp (−βEn + βμNn) , (3.38)

where Ξ denotes the grand canonical partition function given by

Ξ =
∑

n

exp (−βEn + βμNn) (3.39)

which ensures that Pn is normalized to one.
Using the Gibbs formula for the entropy, we get

S = −kB
∑

n

Pn lnPn (3.40)

= −kB
∑

n

Pn [− lnΞ − βEn + βμNn]

= kB lnΞ + 1

T
〈E〉 − 1

T
μ〈N〉 .

Or

〈E〉 = ST − kBT lnΞ + μ〈N〉

Comparing this expression with the one for internal energy: E = T S − pV + μN ,
we obtain

pV = kBT lnΞ , (3.41)

which gives the free energy for the open system. Since the energy, E, depends on
the volume, we can say that the free energy pV of an open system depends on T ,
V and μ, which characterize the nature macroscopic variables for a grand canonical
ensemble.

3.10 Grand Isothermal-Isobaric Ensemble

Grand isothermal-isobaric ensemble is defined as an ensemble with a fixed external
pressure p, temperature T , and chemical potential μ. Thus, in this ensemble, the
energy E, volume V and number of particles N are allowed fluctuating. The
conjugated fields that control these fluctuations are β, βp and −βμ, respectively.
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Therefore, the probability observing the system in a microscopic state n character-
ized by the volume Vn, energy En and number of particles Nn is obtained from
Eqs. (3.30) and (3.31) as:

Pn = Ξ−1 exp (−βEn − βpVn + βμNn) , (3.42)

where the normalization factor Ξ represents the grand isothermal-isobaric partition
function given by

Ξ =
∑

n

exp (−βEn − βpVn + βμNn) . (3.43)

Using the Gibbs formula for the entropy, we have

S = −kB
∑

n

Pn lnPn (3.44)

= −kB
∑

n

Pn [− lnΞ − βEn − βpVn + βμNn]

= kB lnΞ + 1

T
〈E〉 + 1

T
p〈V 〉 − 1

T
μ〈N〉 ,

or

T S = kBT lnΞ + 〈E〉 + p〈V 〉 − μ〈N〉 .

This expression indicates that

kBT lnΞ = 0 ,

or

Ξ = 1 ,

since T > 0.

3.11 Fluctuations

3.11.1 Canonical Ensemble

We showed that each microscopic state n in canonical ensemble has a certain
probability Pn given by expression Eq. (3.11). Since the number of different
microscopic states is very large, we are not only interested on the probability
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of microscopic states (Pn), but also on the probability of the macroscopic state
variables. For instance, the internal energy U . We first calculate the average internal
energy 〈E〉 (or U ):

U ≡ 〈E〉 =
∑

n

EnPn (3.45)

= 1

Q

∑

n

Ene
−βEn

= −
(
∂ lnQ

∂β

)

N,V

.

Similarly, the second moment of U is

〈E2〉 =
∑

n

E2
nPn (3.46)

= 1

Q

∑

n

E2
ne

−βEn

= 1

Q

∑

n

∂2

∂β2 e
−βEn

= 1

Q

(
∂2Q

∂β2

)

N,V

.

Then, the variance of energy fluctuations can be obtained as:

〈(δE)2〉 = 〈(E − 〈E〉)2〉 (3.47)

= 〈E2〉 − 〈E〉2

= 1

Q

(
∂2Q

∂β2

)

N,V

−
[(

∂ lnQ

∂β

)

N,V

]2

= −
(
∂〈E〉
∂β

)

N,V

Since (∂〈E〉/∂T )N,V = CV is the specific heat, then we can further write

〈(δE)2〉 = kBT
2CV (3.48)

Practically, this is a very important result, because it relates the amount of spon-
taneous fluctuations, 〈(δE)2〉, with the degree of energy change with temperature,
CV . Since the specific heat and the energy are extensive quantities, then they are
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of order N (the number of particles in the system). Thus, the ratio of the standard
deviation of the energy fluctuations to its average value is of order N−1/2, i.e:

√
〈(E − 〈E〉)2〉

〈E〉 =
√
kBT 2CV

〈E〉 ∼ O

(
1√
N

)
.

For large systems, such as N ∼ 1023, N−1/2 becomes a very small number and
we can consider the average value of the energy as an accurate prediction of the
experimental internal energy.

For example, consider an ideal gas of structureless particles, we know that

CV = 3

2
NkB

and

〈E〉 = 3

2
NkBT

If we consider N ∼ 1022, then the above ration is numerically ∼10−11, which is a
very small number.

3.11.2 Generalized Ensemble

For general statistical ensemble, from statistical mechanics we have

〈(δx)2〉 = −
(
∂〈x〉
∂f

)

T ,E

. (3.49)

The left hand side is always positive, and the right hand side determines the curve
or convexity of the thermodynamic free energy.

3.11.3 Isothermal-Isobaric Ensemble

For isothermal-isobaric ensemble, x ≡ V and f ≡ βp, thus

〈(δV )2〉 = −
(

∂〈V 〉
∂ (βp)

)

T ,E

(3.50)

= −kBT

(
∂〈V 〉
∂p

)

T ,E

≥ 0 .
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The last inequality is true since from the condition of the thermodynamic equilib-
rium stability, discussed in Chap. 2, we obtained that

(
∂〈V 〉
∂p

)

T ,E

≤ 0 .

For this ensemble, the fluctuations of energy are given as:

〈(δE)2〉 = −
(
∂〈E〉
∂β

)

N,p

, (3.51)

which can further be written as

〈(δE)2〉 = −
(
∂〈H 〉 − p〈V 〉

∂β

)

N,p

(3.52)

= −
(
∂〈H 〉
∂β

)

N,p

+ p

(
∂〈V 〉
∂β

)

N,p

,

where 〈H 〉 is the average value of the enthalpy:

〈H 〉 = 〈E〉 + p〈V 〉

Using the relation of the specific heat at constant pressure:

Cp =
(
∂〈H 〉
∂T

)

N,p

we can write

〈(δE)2〉 = kBT
2

[
Cp − p

(
∂〈V 〉
∂T

)

N,p

]
. (3.53)

This expression can be simplified using the relation:

Cp = CV + T

(
∂p

∂T

)

N,V

(
∂V

∂T

)

N,p

.

Substituting this expression into Eq. (3.53), we get

〈(δE)2〉 = kBT
2CV + kBT

2

[
T

(
∂p

∂T

)

N,V

− p

](
∂〈V 〉
∂T

)

N,p

. (3.54)



112 3 Principles of Statistical Mechanics

Substituting the expression

(
∂〈V 〉
∂T

)

N,p

= −
(
∂p

∂T

)

N,V

(
∂V

∂p

)

N,T

into Eq. (3.54), we obtain

〈(δE)2〉 = kBT
2CV

− kBT

[
T

(
∂p

∂T

)

N,V

− p

][
T

(
∂p

∂T

)

N,V

](
∂V

∂p

)

N,T

(3.55)

= kBT
2CV

− kBT

[
T

(
∂p

∂T

)

N,V

− p

][(
∂(pT )

∂T

)

N,V

− p

](
∂V

∂p

)

N,T

where the following relation was used:

(
∂(pT )

∂T

)

N,V

= p + T

(
∂p

∂T

)

N,V

By direct comparison of the expression given by Eq. (3.48) and the one given
by Eq. (3.55), it can be seen that the energy fluctuations in a canonical ensemble
(with N , V and T constant) differ from the fluctuations in the isothermal-isobaric
ensemble (with N , p and T constant), namely by the term

−kBT

[
T

(
∂p

∂T

)

N,V

− p

][(
∂(pT )

∂T

)

N,V

− p

](
∂V

∂p

)

N,T

which includes the changes of both the pressure (p) and (pT ) with temperature (at
constant N and V ) and changes of the volume with pressure (at constant N and T ).

3.11.4 Grand Canonical Ensemble

Formulas of the fluctuations for the grand canonical ensemble can be defined
similarly to the canonical ensemble. For instance, the fluctuations in the number
of the particles are given by:

〈(δN)2〉 = 〈(N − 〈N〉)2〉 = 〈N2〉 − 〈N〉2 .
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It can easily be shown that

〈N〉 =
(
∂ lnΞ

∂ (βμ)

)

V

, (3.56)

〈N2〉 =
(

1

Ξ

∂2Ξ

∂ (βμ)2

)

V

. (3.57)

Substituting these two expressions into the expression for 〈(δN)2〉, we finally get

〈(δN)2〉 =
(

∂〈N〉
∂ (βμ)

)

V

. (3.58)

Note that 〈(δN)2〉 ≥ 0, hence,

(
∂〈N〉
∂μ

)

T ,V

≥ 0 .

Since 〈N〉 = nN0, where n is the number of moles and N0 is the Avogadro’s number,
we get

(
∂n

∂μ

)

T ,V

≥ 0 ,

which is one of the thermodynamic conditions of the stability for the thermodynamic
equilibrium of the system, obtained in Chap. 2, derived here in the context of
statistical thermodynamics.

Fluctuations of the energy are:

〈(δE)2〉 = −
(
∂〈E〉
∂β

)

V,μ

. (3.59)

The above relation is similar to the relationship found for the canonical ensemble,
but it is different because the derivative is evaluated at a constant N for the canonical
ensemble and a constant chemical potential μ for the grand canonical ensemble.
Hence, the energy fluctuations are different in the canonical and grand canonical
ensembles.

The reason for this difference between the fluctuations in the grand canonical and
canonical ensembles is not easy to determine from the above expression since the
chemical potential is difficult to measure. The difference can be made explicit by
using thermodynamics, in which case we identify the average energy E in the grand
canonical ensemble with U . That is, since on holding V fixed

〈N〉 = 〈N(T ,μ)〉 , (3.60)
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one has

U = U(T , 〈N(T ,μ)〉) . (3.61)

Thus, the differential of U can be written as

dU =
(
∂U

∂T

)

〈N〉
dT +

(
∂U

∂〈N〉
)

T

d〈N〉 (3.62)

=
(
∂U

∂T

)

〈N〉
dT +

(
∂U

∂〈N〉
)

T

×
[(

∂〈N〉
∂T

)

μ

dT +
(
∂〈N〉
∂μ

)

T

dμ

]
.

Hence, the derivative of U with respect to T with μ held fixed is given by

(
∂U

∂T

)

μ,V

=
(
∂U

∂T

)

〈N〉
+

(
∂U

∂〈N〉
)

T

(
∂〈N〉
∂T

)

μ

(3.63)

= CN,V +
(

∂U

∂〈N〉
)

T

(
∂〈N〉
∂T

)

μ

.

Therefore, the fluctuations of energy are given by

〈(δE)2〉 = kBT
2CN,V + kBT

2
(

∂U

∂〈N〉
)

T

(
∂〈N〉
∂T

)

μ

. (3.64)

As one can see, the first term of the energy fluctuation in the grand canonical
ensemble is the same as energy fluctuations in the canonical ensemble where the
number of particles and the volume are fixed and the other contribution (see second
term in Eq. (3.64)) originates from the temperature dependence on the number of
particles.

We can further simplify the above expression to obtain more insights into the
origin of the energy fluctuations in grand canonical ensemble. First, we can consider
the differential of the internal energy U for one component system

dU = T dS − pdV + μd〈N〉 . (3.65)

Dividing both sides by d〈N〉 keeping T and V constant gives

(
∂U

∂〈N〉
)

T ,V

= T

(
∂S

∂〈N〉
)

T ,V

+ μ . (3.66)
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Substituting the Maxwell equation

(
∂S

∂〈N〉
)

T ,V

= −
(
∂μ

∂T

)

〈N〉,V

into Eq. (3.66) we obtain the first thermodynamic relation

(
∂U

∂〈N〉
)

T ,V

= −T

(
∂μ

∂T

)

〈N〉,V
+ μ . (3.67)

Dividing both sides of Eq. (3.62) by dμ keeping T and V constant, we obtain

(
∂U

∂μ

)

T ,V

=
(

∂U

∂〈N〉
)

T ,V

(
∂〈N〉
∂μ

)

T ,V

= T

(
∂〈N〉
∂T

)

μ,V

,

which holds assuming that the internal energy U show minimal changes with

fluctuations in the number of particles, that is

(
∂U

∂〈N〉
)

T ,V

≈ 0, such that the

following relation holds using Eq. (3.67):

(
∂μ

∂T

)

〈N〉,V
= μ

T

Hence,
(
∂〈N〉
∂T

)

μ,V

= 1

T

(
∂U

∂〈N〉
)

T ,V

(
∂〈N〉
∂μ

)

T ,V

(3.68)

= 1

T

(
∂〈N〉
∂μ

)

T ,V

[
μ− T

(
∂μ

∂T

)

〈N〉,V

]
. (3.69)

Then, we obtain

〈(δE)2〉 = kBT
2CN,V + kBT

(
∂〈N〉
∂μ

)

T ,V

[
μ− T

(
∂μ

∂T

)

〈N〉,V

]2

(3.70)

Using the relation

〈(δN)2〉 = kBT

(
∂〈N〉
∂μ

)

T ,V

and expressions in Eqs. (3.67) and (3.70), we obtain

〈(δE)2〉 = kBT
2CN,V + 〈(δN)2〉

[(
∂U

∂〈N〉
)

T ,V

]2

(3.71)
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This expression indicates that the mean squared energy fluctuations have two
contributions, one originating from the mean squared energy fluctuations with a
fixed number of particles and the second contribution comes from the mean squared
fluctuations of the number of particles where each particle that is exchanged with
the reservoir carries with it the energy.



Chapter 4
Thermodynamics of Biological
Phenomena

This chapter aims to discuss the application of the statistical mechanics (or the so-
called statistical thermodynamics) in understanding biological phenomena, based
on the theoretical framework introduced by Lazaridis and Karplus (2003).

4.1 Introduction

The biological systems, similarly to other mechanical systems, live under the
universal laws of physics and chemistry. Currently, the studies of understanding the
function of the leaving organisms and high complex interactions involved in many
critical biological processes support this too.

Experimental results provide a vast amount of information regarding the biolog-
ical phenomena in living cells. However, this information is only qualitatively and
intuitively explained, due in part, that a theoretical framework is missing, which
will be able to interpret the phenomena based on the laws of nature, even when
the structures of the components involved, such as protein and nucleic acids, are
well known. Therefore, the laws of physics, in particular, statistical mechanics and
classical mechanics, can be useful in understanding the phenomena of biological
interests.

For simple isolated systems, the movement towards the equilibrium state is
fast, which is characterized by a maximum of the entropy function, or a mini-
mum of other thermodynamic potential functions based on the principle of the
thermodynamic equilibrium discussed in Chap. 2. However, for complex biological
systems, the use of thermodynamics is limited due to the complexity of the
processes involved. Moreover, identification of the equilibrium state of the complex
biological systems in living systems is in many cases impossible, since they never
reach this thermodynamic equilibrium. Therefore, the complete description of
thermodynamics of such complex biological systems is often tricky (Zotin 1972).
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From the thermodynamic point of view, biological systems may be considered as
open systems far from the equilibrium state. However, some orders can be observed
in the biological system with the entropy of the entire universe still increasing,
although why it occurs is not explained.

From the microscopic point of view, it is more likely that the biological systems
through their processes develop gradually towards the equilibrium states, but due
to the change in the external conditions, these equilibrium states are shifted to
other microscopic states and thus making these equilibrium states unreachable.
A typical example is the folded conformation of a protein, which may represent
the lowest free energy state for some environment conditions (such as, pH), and
thus the equilibrium state of the system. However, if the environmental conditions
change, then the system may gradually develop towards a new equilibrium state,
which may be the unfolded conformation of a protein. In spite of that the biological
processes may not evolve towards thermodynamic stable equilibrium states, equi-
librium thermodynamics has been extensively used to characterize those systems.
It is common, that specific isolated biological processes (such as protein folding,
proton and electron transfer, protein complex interactions, and so on) to have been
studied under equilibrium conditions either experimentally or using computational
methods.

Equilibrium thermodynamic measurements can be instrumental and relevant to
the situations in vivo because, despite the lack of overall thermodynamic equilib-
rium in the cell, there is a partial equilibrium, either within a specific timescale
or within a particular region. Therefore, the limitations of such experimental
measurements should be considered when comparing experimental and theoretical
models results. For example, in protein-ligand binding measurements, equilibrium
binding constant will be measured accurately only if the kinetics of binding is fast
relative to the rate of transport of the protein and ligand.

Since the biological processes depend significantly on the nature of the molecules
involved in the process, statistical thermodynamics is the method of choice in
biology because it deals with the microscopic description of the phenomena, in
contrast to classical thermodynamics is concerned with the macroscopic nature
of the matter. It is worth noting that the origin of interactions between molecules
modeled using the molecular models is critical.

4.2 Stability of Macromolecular Conformations

Macromolecules, such as proteins and nucleic acids, may be in different unique
conformations depending on the physiological conditions. If the conformation
adopted by the system is the most stable, then it is under thermodynamic control.
Otherwise, it corresponds to the kinetically most accessible, and it is said to be
under kinetic control (Wetlaufer and Ristow 1973; Anfinsen and Scheraga 1975).
There could also exist transitions from one conformation to another, depending if the
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barriers are small enough to be traversed within experimental timescales. In such a
case, thermodynamic equilibrium establishes, and the Boltzmann’s distribution will
give the probability distribution of each conformation in the ensemble. In contrast,
if the barriers between the configurations would have been too high, then the system
will not behave ergotically, and the macromolecule will occupy only the lowest
energetically local minimum that will be reached within the available timescale.
With the ergodic system, we will understand a system that has sampled all possible
conformations.

There is experimental evidence of both hypotheses, either of thermodynamic
control (Anfinsen and Scheraga 1975) or kinetic control as recently suggested
for large complex protein systems, both experimentally (Goldberg 1985; Baker
and Agard 1994; Baker 1998) and from computer simulation models of protein
folding (Dinner and Karplus 1998). The kinetic control is more likely to happen
in complex cellular processes (Lazaridis and Karplus 2003), where non-equilibrium
states in biological systems during the lifetime of a cell are maintained, for example,
the composition of biological membranes (Jain 1988).

All concepts of the thermodynamic equilibrium apply if the thermodynamic
control is valid. However, they can also be in use, if the thermodynamic equilibrium
is achieved for some degrees of freedom, although the system has not reached the
overall thermodynamic equilibrium, yet. For example, one concern is about solvent
degrees of freedom. It is known that for most of the macromolecular changes in
conformation, the solvent equilibrates in picoseconds time scales (Halle et al. 1981).
Sometimes, equilibration can also take longer (Otting et al. 1991; Ernst et al. 1995),
for example, equilibration of possible configurations of water inside protein cavities
during the transition from bulk water. Since the equilibration of the solvent is fast
most of the time compare to equilibration of the macromolecule, its degrees of
freedom can be integrated out to give the so-called equilibrium solvation free energy,
which is added to the internal macromolecular energy to provide the so-called
effective energy or potential of mean force for each macromolecular conformation.
This potential of mean force defines a hypersurface in the conformational space
of the molecule, known as the energy landscape (Frauenfelder et al. 1991), with
a shape that determines the conformational properties of the macromolecule under
either thermodynamic or kinetic control regarding the macromolecular degrees of
freedom.

The formalism in Lazaridis and Karplus (1999) using standard mechanical
methods (McQuarrie 1976) is the basics of the following discussion. For this,
consider a macromolecule consisting of M atoms with Cartesian coordinates

Ri = (Xi, Yi, Zi) , i = 1, 2, · · · , M

of the ith atom, and internal coordinates

q = (q1, q2, · · · , q3M−6)
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Moreover, we suppose that this macromolecule is immersed in a solution of N

solvent molecules, considered to be rigid, with coordinates

ri = (xi, yi, zi, αi, βi, γi) , i = 1, 2, · · · , N

where (x, y, z) are the Cartesian coordinates of the centre of mass, and (α, β, γ )

are the Euler angles specifying the orientation. Furthermore, we can consider
(N, V, T ) constant conditions corresponding to the canonical ensemble. Then, the
partition function is

Q =
∏N

i=1 (2πmikBT )3/2 ∏M
i=1 (2πMikBT )3/2

N ! Z (4.1)

where Z is the classical configurational integral

Z =
∫

drN
∫

dRM exp (−βH) (4.2)

with H being the Hamiltonian and β = 1/kBT . We can denote

Λ3N ≡ 1
∏N

i=1 (2πmikBT )3/2
(4.3)

Λ3M ≡ 1
∏M

i=1 (2πMikBT )3/2

to obtain

Q = Z

N !Λ3MΛ3N (4.4)

The Helmholtz free energy is given by

F = −kBT lnQ (4.5)

= −kBT lnZ + kBT ln
(
N !Λ3MΛ3N

)

The Hamiltonian can be formally split into different terms based on the interac-
tions in the system:

H = Hww +Hwm +Hmm (4.6)

where Hww is the Hamiltonian of the solvent-solvent interactions, Hwm is the
Hamiltonian of the solvent-macromolecule interactions, and Hmm is the Hamil-
tonian of the intra-macromolecule interactions. Here, we have assumed that the
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Hamiltonian is additive, which is a fair assumption since most of the molecular
mechanics force fields are additive (MacKerell et al. 1998).

Performing the integration over the solvent degrees of freedom in Eq. (4.2), we
get

Zww =
∫

drN exp (−βHww) (4.7)

which is the so-called pure solvent configurational integral.
Then, we can define the potential of the mean force as

exp (−βW) = Z−1
ww

∫
drN exp (−βH) (4.8)

Thus, Eq. (4.2) can also be written in terms of W as

Z = Zww

∫
dRM exp (−βW) (4.9)

The integral in Eq. (4.9) depends only on the macromolecular degrees of freedom
R. Combining Eq. (4.8) with Eq. (4.6), we can write

exp (−βW) = exp (−βHmm)Z
−1
ww

∫
drN exp (−β (Hmw +Hww)) (4.10)

= exp (−β (Hmm +X))

where

exp (−βX) = Z−1
ww

∫
drN exp (−β (Hmw +Hww)) (4.11)

or

exp (−βX) = Z−1
ww

∫
drN

[
exp (−βHmw)

]
exp (−βHww) (4.12)

= 〈exp (−βHmw)〉w
where 〈· · · 〉w denotes an ensemble average over all pure solvent degrees of freedom.
From Eq. (4.12), we can write that

X = −kBT ln (〈exp (−βHmw)〉w) ≡ ΔGsolv (4.13)

where ΔGsolv is the solvation free energy of the macromolecule or excess chemical
potential (Ben-Naim 1978). It also gives the work done to bring M atoms of the
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macromolecule from the infinity to the solvent plus the work done to create a cavity
in solvent with size big enough to accommodate the macromolecule.

The potential of the mean force can then be:

W = Hmm +X

W contains two terms: the intra-molecular interactions energy and the solvation free
energy. It defines a hypersurface in the conformation space of the macromolecule
in the presence of the equilibrated solvent, and hence it also includes solvation
entropy. This hypersurface is also called energy landscape and it determines the
thermodynamics and kinetics of macromolecular conformation transitions.

This separation in potential of the mean force W can also be obtained in the case
when the Hamiltonian is not additive, such as in the case of three-body interactions
molecular mechanics force fields. In this case, the Hamiltonian is as the following:

H = (Hmm +Hmmm)+ (Hmw +Hww +Hwww +Hwwm +Hmmw) (4.14)

then, the potential of the mean force W is

W = (Hmm +Hmmm) (4.15)

− kBT ln〈exp (−β (Hmw +Hmmw +Hmww))〉w
It is more convenient to use the internal coordinates q for a description of the

macromolecule degrees of freedom (Lazaridis and Karplus 2003). The Jacobian of
this transformation will depend on the bond lengths and bond angles. Therefore, the
Jacobian is constant for all conformations, and it is out of the integral in Eq. (4.9).
The integral over six external coordinates of the overall rotational and translational
motions can be performed, since the system is homogeneous, and it gives

Irot+trans = 8π2V

where V is the volume. Therefore,

Z = ZwwIrot+trans | J |
∫

dq exp (−βW) (4.16)

or

Z = 8π2V | J | Zww

∫
dq exp (−βW) (4.17)

The probability of finding the system at some configuration with internal
coordinates q is (Lazaridis and Karplus 2003) (and the reference therein Lazaridis
and Karplus 1999)

p (q) = exp (−βW(q))∫
dq exp (−βW(q))

(4.18)
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From Eq. (4.5), we obtain

F = −kBT lnZ + kBT ln
(
N !Λ3N

)
+ kBT ln

(
Λ3M

)
(4.19)

= −kBT ln
(

8π2V | J |
)
+ kBT ln

(
N !Λ3N

Zww

)

− kBT ln

(∫
dq exp (−βW(q))

)
+ kBT ln

(
Λ3M

)

= −kBT ln
(

8π2V | J |
)
+ kBT ln

(
N !Λ3N

Zww

)

− kBT ln

(
exp (−βW(q))

p(q)

)
+ kBT ln

(
Λ3M

)

= F 0 + kBT ln

(
Λ3M

8π2V | J |
)
+W(q)+ kBT lnp(q)

Thus, the average value is

〈F 〉 = F 0 + kBT ln

(
Λ3M

8π2V | J |
)
+

∫
dqp(q)W(q) (4.20)

+ kBT

∫
dqp(q) lnp(q)

or

〈F 〉 = F 0 + kBT ln

(
Λ3M

8π2V | J |
)
+ 〈W 〉 − T Sconf (4.21)

where F 0 is the free energy of the pure solvent, the second term is the free energy of
an ideal gas from macromolecular translational and rotational degrees of freedom,
the third term is the average of the potential of mean force, which equals the average
intramolecular energy plus the average solvation energy:

〈W 〉 =
∫

dq
(
Hmm(q)+ΔGsolv(q)

)
p(q)

The fourth term is the contribution from the configurational entropy of the macro-
molecule to the free energy.

The solvent contribution to the entropy is included in the term ΔGsolv(q) and in
p(q). Note that the Gibbs free energy is

〈G〉 = 〈F 〉 + 〈pV 〉

where the term pV under the standard conditions may be negligible.
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The entropy of the system is given as

S = kB lnQ+ kBT

(
∂ lnQ

∂T

)

V,N

(4.22)

Using the expression for Q given by Eq. (4.4), we get

S = kB

[
lnZ − ln

(
N !Λ3MΛ3N

)]
+ kBT

(
∂ lnZ

∂T

)

V,N

(4.23)

− kBT

(
∂ lnΛ3N

∂T

)

V,N

− kBT

(
∂ lnΛ3M

∂T

)

V,N

= kB

[
lnZ + T

(
∂ lnZ

∂T

)

V,N

]
− kB ln

(
N !Λ3MΛ3N

)

+ 3

2
kB(N +M)

= −kB lnp(q, rN)− kB ln
(
N !Λ3MΛ3N

)
+ 3

2
kB(N +M)

where

p(q, rN) = exp
(−βH(q, rN)

)
∫
dqdrN exp

(−βH(q, rN)
) = Z−1 exp

(
−βH(q, rN)

)
(4.24)

Taking the averages of both sides with probability p(q, rN), we obtain

〈S〉 = −kB

∫
dqdrNp(q, rN) lnp(q, rN) (4.25)

− kB ln
(
N !Λ3MΛ3N

)
+ 3

2
kB(N +M)

We can determine the conditional probability p(rN |q) of finding the solvent at a
configuration rN , given that the macromolecule is in a conformation q as

p(rN |q) = p(q, rN)

p(q)
(4.26)

or,

p(q, rN) = p(q)p(rN |q) (4.27)
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Replacing Eq. (4.27) into Eq. (4.25), we obtain

〈S〉 = −kB

∫
dqdrNp(q)p(rN |q)

[
lnp(q|rN)+ lnp(q)

]
(4.28)

− kB ln
(
N !Λ3MΛ3N

)
+ 3

2
kB(N +M)

or,

〈S〉 = −kB

∫
dqp(q) lnp(q) (4.29)

− kB

∫
dqp(q)

∫
drNp(rN |q) lnp(q|rN)

− kB ln
(
N !Λ3MΛ3N

)
+ 3

2
kB(N +M)

In Eq. (4.29), the first term is the configurational entropy of the macromolecule;
the second term is the average solvent entropy for all possible conformations
of a macromolecule, which arises from the solute-solvent and solvent-solvent
correlations.

The internal energy can also be calculated similarly as

E = kBT
2
(
∂ lnQ

∂T

)

V,N

(4.30)

Or,

E = kBT
2
(
∂ lnZ

∂T

)

V,N

(4.31)

− kBT
2
(
∂ lnΛ3N

∂T

)

V,N

− kBT
2
(
∂ lnΛ3M

∂T

)

V,N

= kBT
2
(
∂ lnZ

∂T

)

V,N

− kBT ln
(
N !Λ3MΛ3N

)

+ 3

2
kBT (N +M)

= H(q, rN)− kBT ln
(
N !Λ3MΛ3N

)
+ 3

2
kBT (N +M)
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Taking the average of both sides, we obtain

〈E〉 =
∫

dqdrNp(q, rN)H(q, rN) (4.32)

− kBT ln
(
N !Λ3MΛ3N

)
+ 3

2
kBT (N +M)

where the first term gives the average potential energy and the last two terms give
the average kinetic energy. Using the definition of the condition probability (see
Eq. (4.27)) and Eq. (4.6), we can further write that

〈E〉 =
∫

dqp(q)Hmm(q) (4.33)

+
∫

dqp(q)
∫

drNp(rN |q)
[
Hmw(q, rN)+Hww(rN)

]

− kBT ln
(
N !Λ3MΛ3N

)
+ 3

2
kBT (N +M)

where the first term is the average potential energy of intra-macromolecular interac-
tions, and the second term gives the average potential energy of solute-solvent and
solvent-solvent interactions for all possible conformations of the macromolecule.

The main assumption of the following analysis is that the probability distribution
p(q) completely specifies the conformational states of the macromolecule. In
Eq. (4.21), there are two competing terms: 〈W 〉 and −T Sconf . The first term
tends to localize the macromolecule in the most minimum value of the energy
landscape, on the other hand, the configurational entropy (second term) tends to
make p(q) as uniform as possible. Therefore, the most probable state, the one with
the lowest value of the free energy, may not be the one with the lowest value of
the potential of the mean force, since some of these states may be so narrow that
the vibrational entropy of the macromolecule could be minimal, and thus the term
−T Sconf is unfavorable. That is a common problem on deterring the native state of
a protein (Lazaridis and Karplus 2003).

4.3 Gibbs Free Energy of the Transition

The thermodynamics stability of a macromolecular state A can be expressed in
terms of the Gibbs free energy, ΔG of the state A. Suppose that we have a transition
state reaction

A � B
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where B can be any other state of the macromolecule. Let us denote with K the
equilibrium constant of this reaction. Then, the free energy can be written as

ΔG = −RT lnK = −RT ln
cA

cB
(4.34)

where cA fraction of the state A and cB is the fraction of the state B of
macromolecule. Under standard physiological conditions the Gibbs free energy
is equal to the Helmholtz free energy given that pΔV term is negligible. Often
the experimental results are obtained under constant pressure conditions, and the
quantity ΔG is used. Our aim is to determine an expression for the free energy
of the transition from the state B to the state A in terms of the interactions and
the distributions of microscopic states using the statistical mechanics. Practically,
we can divide the configurational space of macromolecule into subsets consisting
of the configurations of type A and B. Then, the free energy of the conformations
from the set A (or B) is

FA/B = −kBT lnZA/B + kBT ln
(
N !Λ3NΛ3M

)
(4.35)

where

ZA/B = Zww8π2V | J |
∫

A/B

exp (−βW) dq

Here, the integral is over all the configurations either in set A or set B. By definition,
we assume

∑

A,B

ZA/B = Z

The average free energy of the conformations from the set A or B can be found as

〈FA/B〉 = F 0 + kBT ln

(
Λ3M

8π2V | J |
)

(4.36)

+
∫

A/B

dqpA/B(q)W(q)

+ kBT

∫

A/B

dqpA/B(q) lnpA/B(q)

= F 0 + F id + 〈W 〉A/B − T S
conf
A/B
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where pA/B(q) is the probability distribution normalized within either the set A or
B, such that

pA/B(q) = exp (−βW(q))∫
A/B

dq exp (−βW(q))
= Z−1

A/B exp (−βW(q))

The first two terms in Eq. (4.36) are the free energy of pure solvent and the ideal gas
translational and rotational free energy of the macromolecule, which are constant for
any configurational either A or B. The last two terms in Eq. (4.36) are the average
potential of the mean force and configurational entropy of either state A of state B,
which are different. Thus, the free energy difference between the state A and B will
be

Δ〈F 〉 = 〈FB〉 − 〈FA〉 (4.37)

= [〈W 〉B − 〈W 〉A] − T
[
S
conf
B − S

conf
A

]

= Δ〈W 〉 − TΔSconf

= Δ〈Hmm〉 +Δ〈ΔGsolv〉 − TΔSconf

where it is assumed the free energy is a function of the distribution function. As
one can see, the evaluation of the difference in Eq. (4.37) requires an arbitrary
separation of the conformational space into state A and B regions. In the last
expression of Eq. (4.37), the first term Δ〈Hmm〉 gives the difference in the average
intra-macromolecular interactions, the second term gives the difference in solvation
free energy term, which contains the difference in solute-solvent and solvent-solvent
interactions plus the change in the solvent entropy, and the last term includes the
change in the configurational entropy of the macromolecule.

The Gibbs free energy difference between the states A and B is then calculated
by adding the term pΔV :

ΔG = Δ〈Hmm〉 +Δ〈ΔGsolv〉 − TΔSconf + pΔV (4.38)

4.4 The Binding Free Energy

Consider the following macromolecular reaction

A+ B � AB

where A represents the macromolecule of type A in free state, B represents a
macromolecule of type B in free state, and AB represents the two macromolecules
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in bound state. The thermodynamic stability of the bound state (AB) can be
expressed in terms of the binding free energy ΔG, given the equilibrium constant
K of this reaction:

ΔG = −RT lnK = −RT ln
cAB

cAcB
(4.39)

where cAB , cA and cB are the concentrations of the macromolecules of the type AB,
A, and B, respectively, in solution. The Eq. (4.39) can also be written in terms of the
probabilities as

ΔG = −RT lnK = −RT ln
pAB

pApB

(4.40)

where pAB denotes the probability of observing the complex AB in solution,
and pA and pB characterize the probabilities of observing A and B in solution
after the equilibrium of the reaction is reached. This is a macroscopic picture of
determination of the binding free energy. The statistical mechanics is the approach
used to derive an expression for the binding free energy in terms of the interactions
and the distributions of microscopic states.

We can divide the solution into three type of species: A, B and AB, where each
of this macromolecules is characterized by set of conformations. The free energy of
the conformation set of the type A free in solution is:

FA = −kBT lnZA + kBT ln
(
N !Λ3NΛ3M

)
(4.41)

where

ZA = Zww8π2V | J |
∫

A

dq exp (−βW)

with the integral over all possible configurations of macromolecule A in free state.
The average free energy of the conformations from the set A can be found as

〈FA〉 [pA(q)] = F 0 + kBT ln

(
Λ3M

8π2V | J |
)

(4.42)

+
∫

A

dqpA(q)W(q)

+ kBT

∫

A

dqpA(q) lnpA(q)

= F 0 + F id + 〈W 〉A − T S
conf
A
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where pA(q) is the probability distribution normalized within the set of configura-
tions of macromolecule A, such that

pA(q) = exp (−βW(q))∫
A
dq exp (−βW(q))

= Z−1
A exp (−βW(q))

Similarly, we can write the expressions of the average free energy of the conforma-
tions from the set B:

〈FB〉 [pB(q)] = F 0 + F id + 〈W 〉B − T S
conf
B (4.43)

and AB:

〈FAB〉 [pAB(q)] = F 0 + F id + 〈W 〉AB − T S
conf
AB (4.44)

The notation 〈F 〉 [p(q)] indicates that the free energy is a function of the
probability distribution function p(q). The following difference gives the free
energy difference between the bound and unbound states:

Δ〈F 〉 = 〈FAB〉 − (〈FA〉 + 〈FB〉) (4.45)

= [〈W 〉AB − (〈W 〉A + 〈W 〉B)] − T
[
S
conf
AB −

(
S
conf
A + S

conf
B

)]

= Δ〈W 〉 − TΔSconf

= Δ〈Hmm〉 +Δ〈ΔGsolv〉 − TΔSconf

where

Δ〈Hmm〉 = 〈Hmm〉AB − (〈Hmm〉A + 〈Hmm〉B) (4.46)

is the change on the average intra-macromolecular interactions upon binding;

Δ〈ΔGsolv〉 = 〈ΔGsolv〉AB −
(
〈ΔGsolv〉A + 〈ΔGsolv〉B

)
(4.47)

is the change on the solvation free energy upon binding (which contains solute-
solvent interactions, solvent-solvent interactions, and solvent reorganization entropy
term); and

ΔSconf = S
conf
AB −

(
S
conf
A + S

conf
B

)
(4.48)

is the change on the macromolecule configuration entropy upon binding.
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By adding the term pΔV (where ΔV = VAB − VA − VB ), the binding Gibbs
free energy becomes:

ΔG = Δ〈Hmm〉 +Δ〈ΔGsolv〉 − TΔSconf + pΔV (4.49)

Here, we assume that the measurements performed under constant N,p, T con-
ditions. The above expressions for the binding free energy, either Eq. (4.45) or
Eq. (4.49), indicate that the macromolecular binding stability, such as protein-
protein, is a result of the balance between the change in the average potential of
the mean force and the change in macromolecular configurational entropy upon
binding. The change in the average potential of the mean force is related to the
change in depth of the bound state well on the energy landscape upon binding. The
change in the macromolecular configurational entropy is related to the change in the
width of the bound state well on the energy landscape upon binding.

4.5 Theoretical Models

In molecular dynamics simulations, solvation is treated explicitly by surrounding
the macromolecule with a sufficiently large number of water model molecules.
There exist two limitations of this approach (Lazaridis and Karplus 2003). First,
the procedure is computationally expensive. Most of the Computer Processing Unit
(CPU) time is spent on calculating the motions of the solvent molecules with no
direct interest in most of the cases. The second limitation is the lack of knowledge
of the potential of mean force in explicit solvent simulations for a macromolecular
conformation, whereas the intramolecular energy is known. Note that the calculation
of the solvent-solute and solvent-solvent energies is also possible, but they are
not directly related to the solvation free energy. An alternative way to explicit
solvation is to include in the potential energy function a model for the solvation
free energy, such as performing simulations with a potential of the mean force.
Often this approach is called implicit solvation model and it has resulted in being
about two orders of magnitude faster than the simulations using the explicit solvent
model (Lazaridis and Karplus 2003).

The solvation free energy given by Eq. (4.13) is also known as the excess
chemical potential, which is the part of the chemical potential that depends on the
interactions between the solute and solvent, and it is zero for an ideal gas of particles.
The solvation free energy, ΔGsolv represents the free energy for transferring the
macromolecule from the gas phase to the solution, which include the electrostatic
work done for bringing the set of partial atomic charges of macromolecule from the
infinity to a configuration in solution, plus the work done for creating a cavity in
solution of size of the solute. Besides, it also includes the re-organization entropy of
the solvent molecules displaced from the formed cavity into the solution.
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There are many theoretical studies of the conformational properties of macro-
molecules that depend significantly on the development of quantitative models for
the solvation free energy of these systems. Statistical thermodynamics has been used
to develop different solvation models. For example, analytical theories for predicting
thermodynamic properties of hard sphere fluids (Reiss 1965) and integral equation
theories, such as Percus-Yevick approximation (Hansen and McDonald 1986). For
solutions, we can mention the X-reference interaction site model (XRISM) (Hirata
and Rossky 1981; Pettitt and Rossky 1986; Yu and Karplus 1988), which has been
used to calculate the thermodynamic solvation properties of small solutes.

More accurate methods are also employed, such as the free energy perturbation
theory and thermodynamic integration methods (Beveridge and DiCapua 1989;
Kollman 1993), which are exact within the limit of given intermolecular potentials.
The only limitation is the computational demands; they require very long simula-
tions for reaching the convergence of the configuration sampling.

Another approach is to consider the system solute-solvent as inhomogeneous
system. Based on this approach the solvation free energy contributions of energetics
and entropy are considered separately (Matubayasi et al. 1994; Lazaridis 1998b):

ΔGsolv = ΔEsolv − TΔSsolv + pΔV solv (4.50)

where the first term is solvation energy, the second is solvation entropy and the
third term includes changes on the volume at constant pressure. First two terms are
expressed as sum of the solute-solvent and solvent-solvent contributions:

ΔEsolv = Emw +ΔEww (4.51)

ΔSsolv = Smw +ΔSww

For inserting the macromolecule (solute) in a fixed point in the solvent solution, we
can write (Bartels and Karplus 1998; Lazaridis 1998b):

Emw = ρ

∫
drg(1)(r)umw(r) (4.52)

ΔEww = 1

2
ρ2

∫
drdr′g(1)(r)

[
g(1)(r′)− 1

]
g(2)(r, r′)uww(r, r′) (4.53)

Smw = −kBρ

∫
drg(1)(r) ln g(1)(r) (4.54)

ΔSww = −1

2
kBρ

2
∫

drdr′g(1)(r)
[
g(1)(r′)− 1

]
g(2)(r, r′) (4.55)

×
[
g(2)(r, r′) ln g(2)(r, r′)− g(2)(r, r′)+ 1

]

where ρ = N/V is the solvent number density, ρg(1)(r) is the local density of
the solvent located at r (where g(1)(r) is the pair correlation function between
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the macromolecule and the solvent), umw(r) is the potential interaction function
between the macromolecule and a solvent molecule, g(2)(r, r′) is the pair correlation
function between the solvent molecules, and uww(r, r′) is the interaction potential
function between two solvent molecules at positions r and r′, respectively. The
main approximation assumed from Eq. (4.52) to Eq. (4.55) includes neglecting the
correlations between more than two particles (Lazaridis 1998b). Here, ΔV solv is the
excess partial molar volume of the macromolecule (Lazaridis and Karplus 2003)

ΔV solv =
∫ [

1 − g(1)(r)
]
dr (4.56)

In general, the term pΔV solv is too small under standard conditions, and thus it can
be neglected.

Here, Emw representing the macromolecule-solvent interaction energy derives
from the statistical thermodynamics. The macromolecule-solvent entropy Smw

include correlations between the macromolecule and solvent, such as, positional
correlations (which include the fluctuations of the water around macromolecule)
and orientation correlations (which include preferential orientations of the solvent
around macromolecule). ΔEww and ΔSww characterize the solvent reorganization
energy and entropy, respectively, due to changes in solvent-solvent interactions and
correlations upon insertion of the macromolecule in the solvent.

The components of the solvation free energy can be written as integrals over the
space around the macromolecule as

ΔGsolv =
∫

f (r)dr (4.57)

where f (r) is the solvation free energy density. Here, we will neglect the term
pΔV solv , and write

f (r) = ρg(1)(r)umw(r) (4.58)

+ 1

2
ρ2g(1)(r)

∫
dr′

[
g(1)(r′)− 1

]
g(2)(r, r′)uww(r, r′)

+ kBTρg
(1)(r) ln g(1)(r)

+ 1

2
kBρ

2g(1)(r)
∫

dr′
[
g(1)(r′)− 1

]

×
[
g(2)(r, r′) ln g(2)(r, r′)− g(2)(r, r′)+ 1

]

The main advantage of the definitions in Eqs. (4.57) and (4.58) is that they give a
direct relation between the solvation free energy and structure of the solvent around
the macromolecule immersed on it, and a detailed decomposition of the solvation
free energy. This definition of the solvation free energy has already been applied to
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determine the thermodynamics of hydrophobic hydration (Lazaridis 2000; Lazaridis
and Paulaitis 1992, 1994) and solvation in simple fluids (Lazaridis 1998a, 2001), and
it has proven to be useful for understanding of the solvation process.

4.6 Energy Function

As we discussed above, one of the main characteristics on the thermodynamics of
the biological processes is the potential energy function, which will lead in the
calculation of the Hamiltonian function given by Eq. (4.6) in terms of the atomic
coordinates.

The potential energy function of macromolecules must be accurate, but at the
same time must be fast in the evaluation. Thus simple models are used in practice to
express the potential energy function mathematically. In general, it is defined by a
calibration procedure, which consists of fitting it to either experimental or quantum
mechanical data.

The potential energy function U(RM) of the macromolecule as a function of the
atomic coordinates, RM , has the form

U(RM) =
∑

bonds

kb(b − b0)
2 +

∑

angles

kθ (θ − θ0)
2 (4.59)

+
∑

dihedrals

kφ(1 + cos(nφ − δ))+
∑

impropers

kη(η − η0)
2

+
∑

i>j

εij

⎡

⎣
(
R

(min)
ij

rij

)12

− 2

(
R

(min)
ij

rij

)6⎤

⎦+ qiqj

4πεε0rij

where kb, kθ , kφ , and kη are the bond stretching, angle bending, dihedral angle,
and improper dihedral angle force constants, respectively. b0, θ0, δ and η0 are the
equilibrium values of the bond length, angle bending, dihedral angle, and improper
dihedral angle, respectively; while b, θ , φ and η are the values of the bond length,
angle bending, dihedral angle, and improper dihedral angle, respectively, which are
all functions of the coordinates RM .

Note that dihedral term depends on the parameters n and δ, which are, respec-
tively, the multiplicity and the phase, The non-bounded interactions include the
Lennard-Jones potential 12-6 and the electrostatic interactions. Here, εij is the

Lennard-Jones well-depth and R
(min)
ij is the distance at the Lennard-Jones mini-

mum, as illustrated graphically in Fig. 4.1.
The electrostatic interactions are characterized by the Coulomb interaction

between two partial atomic charges qi and qj separated by a distance rij , ε0
is the vacuum permitability and ε is the dielectric constant. The Lennard-Jones
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Fig. 4.1 A plot of the Lennard-Jones 12-6 potential; εij indicates the well-depth and R
(min)
ij is the

distance of the potential energy function minimum

parameters between pairs of different atoms are obtained using the Lorentz-
Berthelot combination rules:

εij = √
εiεj , R

(min)
ij = 1

2

(
R

(min)
i + R

(min)
j

)

which are known as the geometric and arithmetic rules, respectively. The form of
the potential energy function given by Eq. (4.59) is simple and easy to calculate,
in particular, the derivatives for the Cartesian coordinates. Moreover, simplicity
still guarantees the accuracy of the macromolecular properties representation. Use
of the harmonic terms for the internal motions is sufficient for main condensed
phase simulations, which run around the room temperatures. The parameters are
determined by a calibration procedure, which tries to reproduce the experimental
pure liquid, solution and crystal data, and sometimes also the quantum mechanical
results.

Note that there are different forms of the potential energy function given by
Eq. (4.59), which differ slightly from each other; mainly from additional of other
cross terms for bonded interactions and the protocol used during the calibration for
determination of the force constants. Equation (4.59) determines the form of the
potential energy function defined in CHARMM program (Brooks et al. 2009) with
parameters developed as in Dinner and Karplus (1998). Next chapters discuss the
details of parametrization and explanation of every term.



Chapter 5
Free Energy Calculation Methods Used
in Computer Simulations

In this chapter, we will present the most advanced methods used in the calculation
of free energy from the computer simulations. First, in this chapter, we will discuss
the methods employed in molecular dynamics simulations using explicit solvent
models, such as the thermodynamic free energy perturbation method, thermody-
namic integration method, and slow growth method. Then, the implicit solvation
models will be discussed using either Poisson-Boltzmann or Generalized Born
approximation for treating the electrostatic interactions. Besides, in this chapter, we
will discuss rigorous methods used on the free energy decomposition for predicting
the contributions from different physical terms into the total free energy value.

5.1 The Free Energy Calculations

There exist several methods for calculation of absolute free energy of (bio)molecules
immersed in an explicit solvent solution, discussed in the following.

5.1.1 Thermodynamic Perturbation Method

Let us consider two systems characterized by states 1 and 2, respectively, with
Hamiltonian H1(rN,pN) and H2(rN,pN), where N is the number of particles in
the system. Then, the free energy difference between the two systems is given

ΔF = F2 − F1 (5.1)
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Using the thermodynamic relationship between the Helmholtz free energy and
partition function:

F = −kBT lnQ(T )

we obtain

ΔF = −kBT ln

(
Q2

Q1

)
(5.2)

or

ΔF = −kBT ln

(∫
dNr

∫
dNp exp(−H2/kBT )∫

dNr
∫
dNp exp(−H1/kBT )

)
(5.3)

= −kBT ln

⎛

⎜⎜⎝

∫
dΓ exp

(
− H2

kBT

)
exp

(
− H1

kBT

)
exp

(
+ H1

kBT

)

∫
dΓ exp

(
− H1

kBT

)

⎞

⎟⎟⎠

= −kBT ln

⎛

⎜⎜⎝

∫
dΓ exp

(
−H2 −H1

kBT

)
exp

(
− H1

kBT

)

∫
dΓ exp

(
− H1

kBT

)

⎞

⎟⎟⎠

= −kBT ln〈exp

(
−H2 −H1

kBT

)
〉1

where 〈· · · 〉1 indicates an ensemble average over the configurations with initial
state 1 and dΓ = dNr dNp. This is known as forward thermodynamic perturbation
method developed by Zwanzig (1954).

Similarly, we can perform the averaging over configurations corresponding to the
state 2 as:

ΔF = +kBT ln

(∫
dNr

∫
dNp exp(−H1)/kBT )∫

dNr
∫
dNp exp(−H2/kBT )

)
(5.4)

= +kBT ln

⎛

⎜⎜⎝

∫
dΓ exp

(
− H1

kBT

)
exp

(
− H2

kBT

)
exp

(
+ H2

kBT

)

∫
dΓ exp

(
− H2

kBT

)

⎞

⎟⎟⎠

= +kBT ln

⎛

⎜⎜⎝

∫
dΓ exp

(
−H1 −H2

kBT

)
exp

(
− H2

kBT

)

∫
dΓ exp

(
− H2

kBT

)

⎞

⎟⎟⎠

= +kBT ln〈exp

(
−H1 −H2

kBT

)
〉2
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which simulates the reverse process. In general, to perform the thermodynamic
perturbation simulation one has first to define H1 and H2 and then run the simulation
at state 1 and calculate the average given by Eq. (5.3). Similarly, the simulations
could start from state 2 and perform the average given by Eq. (5.4).

Note that if the probability distributions of the two states 1 and 2 do not overlap
the free energy calculations by either using formula given by Eq. (5.3) or Eq. (5.4),
the value of free energy difference ΔF will not be evaluated accurately. This is
because the state 2 will not be sampled efficiently when starting the simulations
from state 1, and vice-versa. This happens, in particular, when the energy difference
between the two states is much larger than kBT , i.e.,

| H2 −H1 |� kBT

In order to obtain accurate calculations of the free energy differences, an intermedi-
ate state between 1 and 2 is introduced, called here reference state, with Hamiltonian
Hr and free energy Ar . Then, the free energy difference can be written as:

ΔF = F2 − F1 (5.5)

= (F2 − Fr + Fr − F1)

= −kBT ln

(
Q2

Qr

· Qr

Q1

)

= −kBT ln〈exp (−β(H2 −Hr))〉r
+ kBT ln〈exp (−β(H1 −Hr))〉r

where 〈· · · 〉r denotes an ensemble average over the configurations generates starting
from state r . Using this method, the sampling can be improved, and so more reliable
value can be obtained, if the reference state is such that its distribution overlaps with
distributions of the states 1 and 2.

In principle, we can determine more than one reference state, for example, N
such states can be defined with Hamiltonian H

(1)
r , · · · ,H (N)

r , then the free energy
difference is given by

ΔF = F2 − F1 (5.6)

=
(
F2 −

N∑

i=1

F (i)
r +

N∑

i=1

F (i)
r − F1

)

= −kBT ln

(
Q2

Q
(N)
r

· Q
(N)
r

Q
(N−1)
r

· · · · · Q
(2)
r

Q
(1)
r

Q
(1)
r

Q1

)

= −kBT ln〈exp
(
−β(H2 −H(N)

r )
)
〉(N)
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Fig. 5.1 Free energy difference calculation using multiple simulation run from the reference states
(1), (2), · · · , (N)

+ kBT ln〈exp
(
−β(H(N−1)

r −H(N)
r )

)
〉(N)

− · · ·
− kBT ln〈exp

(
−β(H(2)

r −H(1)
r )

)
〉(1)

+ kBT ln〈exp
(
−β(H1 −H(1)

r )
)
〉(1)

This simulation can significantly improve the sampling of phase space and in
this way it can also improve the accuracy of free energy difference calculations,
especially, when the two states 1 and 2 are separated by many intermediate
metastable states. Practically, we can start multiple simulation runs using different
initial conditions, each having as a starting configuration one of the intermediate
reference states, 1 to N , as illustrated graphically in Fig. 5.1.

Note that the efficiency of this method depends on the overlap of distributions
between neighboring reference states, and it also depends on the overlap between
distributions of state 1 and reference state (1) and between state 2 and the reference
state (N ). However, in practice, the distribution of phase space for a system is not
known a priory. Therefore, the choice of reference states is crucial in improving the
accuracy of the method.

To overcome the above-mentioned problems, different simulation techniques
can be suggested. For instance, it can be suggested to run multiple copies of
the same system starting with different initial conditions and configurations from
the reference states (1), (2), · · · , (N), called replica. Then, we can frequently at
regular time intervals swap the configurations of neighboring runs using energy
criteria to ensure the detailed balance. This way, we will have the configurations
from different simulation runs traveling along the replicas increasing overlap of
energy distribution between the neighboring replicas. Acceptance probability of an
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attempting configuration swap between two neighboring replicas, let us say i and j ,
can be calculated as

pacc = min{1, exp
(−β(Ei − Ej)

)} (5.7)

where Ei and Ej are the configuration energies of replica i and j , respectively. To
create a pathway of multiple reference states, an order parameter λ has often been
assigned to the transformation path, which is gradually changed from 0 to 1. This
parameter is used to describe progress in the transformation relative to the end states
by parameterizing the Hamiltonian of the system at some intermediate reference
state as the following

Hλ(rN,pN) = λH2(rN,pN)+ (1 − λ)H1(rN,pN) (5.8)

It can be seen that for λ = 0, Hλ(rN,pN) = H1(rN,pN), and for λ = 1, we
get Hλ(rN,pN) = H2(rN,pN). Then, the simulations are performed at different
values of λ between 0 and 1 generating in this way a series of reference states
to determine ensemble averages from which free energy differences are calculated
using Eq. (5.6).

In general, the empirical force field potential energy function used to describe the
inter- and intramolecular interactions of system is given by Eq. (4.59) (in Chap. 4).
Each of these terms in the potential energy function is modified at an intermediate
reference state λ and written as a linear combination of the values for states 1 and 2:

kb,i(λ) = λkb,i(2)+ (1 − λ)kb,i(1) (5.9)

bi,0(λ) = λbi,0(2)+ (1 − λ)bi,0(1)

kθ,i(λ) = λkθ,i(2)+ (1 − λ)kθ,i(1)

θi,0(λ) = λθi,0(2)+ (1 − λ)θi,0(1)

kφ,i(λ) = λkφ,i(2)+ (1 − λ)kφ,i(1)

φi(λ) = λφi(2)+ (1 − λ)φi(1)

δi(λ) = λδi(2)+ (1 − λ)δi(1)

kη,i(λ) = λkη,i(2)+ (1 − λ)kη,i(1)

ηi,0(λ) = ληi,0(2)+ (1 − λ)ηi,0(1)

εij (λ) = λεij (2)+ (1 − λ)εij (1)

R
(min)
ij (λ) = λR

(min)
ij (2)+ (1 − λ)R

(min)
ij (1)

qi(λ) = λqi(2)+ (1 − λ)qi(1)

where the subscript i runs overall elements of each potential energy term and the
subscript ij runs overall pairs of the atoms i and j .
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1

−kB T In< e−β (H2 – H1)

λ

2λ

3λ

N –1λ

Nλ

>1

−kB T In< e−β (H3 – H2)>2

−kB T In< e−β (HN – HN –1)>N –1

Fig. 5.2 Forward free energy difference calculation using λ pathway from state 1 to 2

For each value λi we can perform a molecular dynamics simulation with
corresponding force field parameters scaled according to an appropriate value of
λi as in Eq. (5.9). Figure 5.2 shows a setup of the free energy difference calculated
using molecular dynamics simulations. For every simulation at a value of λi , first
the system is equilibrated, then a production run is generated during which the free
energy difference ΔF(λi → λi+1) is calculated according to the ensemble average:

ΔF(λi → λi+1) = − 1

β
ln〈exp (−β(Hi+1 −Hi))〉i (5.10)

where 〈· · · 〉i denotes an ensemble average with initial distribution from the simu-
lation run with λi . For λ1 = 0, the initial configuration is random and the initial
velocities randomly chosen from the Maxwell-Boltzmann distribution. For every
other λi , the initial state is chosen from the last previous run for λi−1. Then the free
energy difference between the states 1 and 2 is given by

ΔF =
N−1∑

i=1

ΔF(λi → λi+1) (5.11)

The approach described above is also called the forward sampling, i.e., the
free energy difference is calculated based on transition λi → λi+1. Similarly,
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1

+kB T In< e−β (H1 – H2)

λ

2λ

3λ

N –1λ

Nλ

>2

+kB T In< e−β (H2 – H3)>3

+kB T In< e−β (HN –1 – HN) >N 

Fig. 5.3 Backward free energy difference calculation using λ pathway from state 1 to 2

the backward sampling approach can also be introduced, in which the free energy
difference between λi and λi−1 is calculated. Also in this approach, λ changes from
0 to 1, and the total free energy difference is

ΔF =
N∑

i=2

ΔF(λi → λi−1)

where

ΔF(λi → λi−1) = +kBT ln〈exp (−β(Hi−1 −Hi))〉i
The simulation diagram is shown in Fig. 5.3.

Note that although the formula for forward and backward analysis are formally
equivalent, their convergences may be different (Widom 1963). Therefore, there
could be a preferred direction to carry out the required transformation between the
states.

In double-wide sampling approach, the free energy difference is obtained for
transitions λi + Δλ/2 → λi and λi + Δλ/2 → λi+1 using the simulations shown
in Fig. 5.4, where Δλ is the step on change in λ. This approach produces for each
λi two free energy differences, ΔF(λi−1/2 → λi) and ΔF(λi → λi+1/2), which is
more efficient approach of calculating the desired free energy since two free energy
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1

2
+kB T In< e+ −β (H1 – H1+1/2)

λ

2λ

3λ

1λ Δ λ >1/2

+kB T In< e−β (H2 – H2+1/2)>1/22+2λ Δ λ

2+ Δ λ

−kB T In< e−β (H2 – H1+1/2) >1/2

−kB T In< e−β (H3 – H2+1/2)>1/2

N –1λ

Nλ

N –1λ +kB T In< e−β (HN –1 – H(N –1)+1/2)  >1/2

−kB T In< e−β (HN – H(N –1)+1/2)  >1/2

Fig. 5.4 Double-wide sampling free energy difference calculation using λ pathway from state 1
to 2

difference calculations are produced from a single simulation. The total free energy
difference is then calculated as

ΔF = ΔF(λi−1/2 → λi)+ΔF(λi → λi+1/2) (5.12)

=
N−1∑

i=1

[+kBT ln〈exp
(−β(Hi −Hi+1/2)

)〉i+1/2

−kBT ln〈exp
(
Hi+1 −Hi+1/2

)〉i+1/2
]

= −kBT

N−1∑

i=1

ln
〈exp

(
Hi+1 −Hi+1/2

)〉i+1/2

〈exp
(−β(Hi −Hi+1/2)

)〉i+1/2

It can be seen that in all calculations, ΔF depends on the average of a quantity
which is a function of ΔH = Hi+1 −Hi . In general, we can take this average as an
integral of exp(−βΔH) weighted with probability distribution of ΔH Pi(ΔH):
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ΔFi = −kBT ln
∫

exp(−βΔH)Pi(ΔH) d(ΔH) (5.13)

If Hi and Hi+1 would be functions of some number of identically distributed random
variables, then ΔH would have a Gaussian distribution:

Pi(ΔH) = 1√
2πσ 2

exp

(
− (ΔH − 〈ΔH 〉i )2

2σ 2

)
(5.14)

where

σ 2 = 〈ΔH 2〉i − (〈ΔH 〉i )2

However, Pi(ΔH), in general, may have slightly different shape from the Gaussian
distribution, although it is close to a Gaussian-like shape. Replacing Eq. (5.14) into
Eq. (5.13), we get

ΔFi = 〈ΔH 〉i − β

2
σ 2 (5.15)

where the first term is the average of ΔH measured in the reference state i and
the second term depends on the fluctuations of ΔH . While the first term can be
positive or negative, the second one is always negative. Therefore, the accuracy in
measuring ΔFi depends on the balance between two terms in Eq. (5.15). We can
write Eq. (5.15) as

ΔFi = 〈ΔH 〉i − γ σ (5.16)

where

γ = σ

2kBT

Thus, for σ = nkBT , where n integer number, we get

ΔFi = 〈ΔH 〉i − n

2
σ (5.17)

Simple calculations show that for n = 1 (i.e., σ = kBT ), then 95% of the values
of ΔH fall in the region 〈ΔH 〉i ± 2σ , and from Eq. (5.17) we can see that ΔFi =
〈ΔH 〉i − σ/2, which falls inside the region where most of the ΔH are sampled.
That is, the simulations will result in accurate measure of ΔFi . However, for n > 4
(i.e., σ > 4kBT ), more than 97% of the ΔH values fall in the region 〈ΔH 〉i ± 2σ ,
and from Eq. (5.17) we can see that ΔFi < 〈ΔH 〉i − 2σ , which falls outside the
region where most of the ΔH are sampled, hence, in this case inaccurate measure
of ΔFi will be produced due to the sampling inefficiency.
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Thus, the use of free energy perturbation method implies that Pi(ΔH) should
have small fluctuations around the mean value of ΔH , although this does not imply
that the free energy difference between the reference states i and i+1 must be small.
Depending also on the problem of interest, choosing intermediate reference states
separated by a constant Δλ may not be the best possible way. Therefore, in practice,
both N (number of reference states) and Δλi have to be optimized. For example,
one can start with a large value of N , and then optimize N and Δλi from initial runs
such that P(ΔHi,i+1) are sufficiently small and approximately equal (Pearlman and
Kollman 1989).

In order to improve the sampling, so-called enveloping distribution sampling
(EDS), can be used. In this method, instead of performing the simulations using
Hamiltonian of any two reference states 1 and 2, we can simulate using an effective
Hamiltonian given as

Heff (rN,pN) = − 1

β
ln

(
exp

(
−βH1(rN,pN)

)
(5.18)

+ exp
(
−βH2(rN,pN)

))

As an illustration, we considered a two states system, namely the state 1 with a
potential energy function

U1(x) = k1(x + 15)2

and state 2 with the potential energy function

U2(x) = k2(x − 15)2

with k1 = k2 = 0.1 kJ/mol. These two states can represent two Hamiltonian systems
with probability distributions centered around x = −15 and x = 15, respectively, in
one-dimensional space. We performed two different molecular dynamics simulation
runs. The first one run corresponds to standard molecular dynamics simulation
starting from state 1 or 2, and the second one corresponds to molecular dynamics
simulation run with EDS starting either from state 1 or 2 with effective potential
energy function given by

Ueff (x) = − 1

β
ln (exp (−βU1(x))+ exp (−βU2(x)))

In Fig. 5.5 we present the results of molecular dynamics simulation runs at constant
temperature T = 600 K. In Fig. 5.5a for both simulations, standard and EDS, the
runs started from the state 1, i.e., initially x = −15, and in Fig. 5.5b the results
are presented for simulations with initial position x = +15. The initial velocities
sampled from the Maxwell-Boltzmann distribution at T = 600 K. The results show
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Fig. 5.5 Position distribution of simulation run for standard and EDS molecular dynamics
simulations for a two states system with potential energy functions U1(x) = k1(x + 15)2

and U2(x) = k2(x − 15)2, respectively. EDS molecular dynamics (a) started from the same
configuration x = +15 and (b) from x = −15. Standard molecular dynamics (c) started from
the same configuration x = +15 and (d) from x = −15. Velocity according to the Maxwell-
Boltzmann distribution at temperature T = 600 K, and k1 = k2 = 0.1 kJ/mol

that regardless of which state the simulations started both states (1 and 2) are
visited during the EDS molecular dynamics simulations. In contrast, in the case
of standard molecular dynamics simulations runs, the system was not able to visit
the other state (see also Fig. 5.5). These results indicate that molecular dynamics
simulations with EDS provide a better sampling of the configuration space and can
significantly improve the accuracy of free energy difference calculations using the
thermodynamic perturbation method.

5.1.2 Thermodynamic Integration Method

Another used method for calculation of free energy differences is the so-called
thermodynamic integration approach. Using this method, the free energy difference
between the two states 1 and 2 is given by

ΔF =
∫ 1

0

(
∂Fλ

∂λ

)

T

dλ (5.19)

where λ is the coupling parameter of the Hamiltonian

Hλ(rN,pN) = (1 − λ)H1(rN,pN)+ λH2(rN,pN) (5.20)
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The Helmholtz free energy is related to the partition function Q(β) as

Fλ = − 1

β
lnQλ(β)

where

Qλ(β) = 1

N !h3N

∫
dNr

∫
dNp exp

(
−βHλ(rN,pN)

)

Then, we can first calculate the derivative of Helmholtz free energy with respect to
λ as

(
∂Fλ

∂λ

)

T

= − 1

β

1

Qλ

(
∂Qλ(β)

∂λ

)

T

(5.21)

= 1

Qλ

1

N !h3N

∫
dΓ exp

(
−βHλ(rN,pN)

)(
∂Hλ

∂λ

)

= 〈∂Hλ

∂λ
〉λ

Replacing Eq. (5.21) into Eq. (5.19), we obtain

ΔF =
∫ 1

0
〈∂Hλ

∂λ
〉λ dλ (5.22)

where 〈· · · 〉λ denotes the ensemble average at the reference state with a particular λ.
Equation (5.22) indicates that to calculate free energy differences we need to

perform numerically the integral with respect to λ. This practically is done by
performing several simulation runs at different λi from 0 to 1: λ1, λ2, · · · , λK . For
each λi , the ensemble average of the following quantity is calculated:

〈∂Hλ

∂λ
〉λi

Then, using simple numerical integration, Eq. (5.22) can be approximated as

ΔF ≈
K∑

i=1

〈∂Hλ

∂λ
〉λiΔλi (5.23)

Other numerical integration approaches can also be used, such as, the trapezoidal
method

ΔF ≈
K−1∑

i=1

[
〈∂Hλ

∂λ
〉λi + 〈∂Hλ

∂λ
〉λi+1

]
Δλi

2
(5.24)
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or Gaussian quadrature approach:

ΔF ≈
K∑

i=1

〈∂Hλ

∂λ
〉λiwi (5.25)

where wi are the Gaussian’s weights, which depend on K .
Note that in principle thermodynamic integration can be performed for any

expression of Hλ as a function of λ, including nonlinear coupling between H1 and
H2, as long as the function is differentiable and satisfies the boundary conditions:

Hλ=0 = H1, Hλ=1 = H2

However, the linearity of λ dependence of Hλ has a property that makes this
expression practically very convenient, that is the sign of second derivative ∂2F/∂λ2

is a known non-positive value. In particular, it is as:

(
∂2F

∂λ2

)

N,V,T

= −β
[
〈(H2 −H1)

2〉λ − 〈H2 −H1〉2λ
]
≤ 0

That means, ∂F/∂λ can never increase with increasing λ. That is also known as
the Gibbs-Bogoliubov inequality, and it can be used to validate the accuracy of free
energy difference calculation results.

It is interesting to note that performing numerical integration requires that the
integrand in Eq. (5.22) must be a continuous function of λ. However, this property
could not always be satisfied with a linear parameterization of Hλ. In particular, as
it is most of the time the case, λ parametrization is applied to the potential energy
function as

Uλ = (1 − λ)U1 + λU2

It could happen that for λ = 0, Uλ exhibit a singularity in Eq. (5.22) for λ = 0,
which can be avoided by using special techniques (Frenkel and Smit 2001).

5.1.3 The Slow Growth Method

The other method for calculation of free energy differences by means of computer
simulations is slow growth approach. In this method, the Hamiltonian changes by
a very small constant amount at each step of the calculation. In other words, the
changes Hλi+1 −Hλi are very small and constant. The free energy difference can be
derived using the free energy perturbation expression:
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ΔF = −kBT

K−1∑

i=1

ln〈exp (−β(Hi+1 −Hi))〉λi ,NV T (5.26)

≈ −kBT

K−1∑

i=1

ln〈1 − β(Hi+1 −Hi)+ · · · 〉λi ,NV T

≈ −kBT

K−1∑

i=1

ln
[
1 − β〈(Hi+1 −Hi)〉λi ,NV T + · · · ]

≈
K−1∑

i=1

〈(Hλi+1 −Hλi

)〉λi ,NV T

where 〈· · · 〉λi ,NV T denotes an ensemble average for constant NVT simulations
with Hamiltonian of the system determined by H(λ = λi).

5.2 Free Energy Decomposition

In this section, we will describe a method for a decomposition of the free energy
into different terms, such as the terms belonging to the diverse group of atoms,
or the other kind of interactions, as developed in Bren et al. (2006, 2007) for the
perturbation method.

In particular, if the Hamiltonian difference in Eq. (5.10) can be decomposed
into the terms that are either from different group of atoms or different types of
interactions, then we can write:

ΔHi ≡ Hi+1 −Hi =
Ng∑

g=1

(
H

(g)

i+1 −H
(g)
i

)
≡

Ng∑

g=1

ΔH
(g)
i (5.27)

where Ng denotes the number of decomposition terms and ΔH
(g)
i gives the

difference of the Hamiltonian between the nearest reference states at the i window.
This, of course, is valid if the force field does not include cross terms, which is
the case of many biomolecular force fields, but for the polarized force fields and
quantum-chemical calculations, it may not be the case.

If we can write Eq. (5.27), then expression given by Eq. (5.10) can be simplified
as the following:

ΔF(λi → λi+1) = − 1

β
ln〈exp

⎛

⎝−β

Ng∑

g=1

ΔH
(g)
i

⎞

⎠〉i (5.28)

= − 1

β
ln〈

Ng∏

g=1

exp
(
−βΔH

(g)
i

)
〉i
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If we assume that different terms of the Hamiltonian decomposition are additionally
independent, which is not the case even for the pair-wise additive force fields given
by Eq. (4.59) (in Chap. 4), because different energy terms include in their definition
atoms that belong to other energy terms, then we can write that

〈
Ng∏

g=1

exp
(
−βΔH

(g)
i

)
〉i =

Ng∏

g=1

〈exp
(
−βΔH

(g)
i

)
〉i (5.29)

Then, Eq. (5.28) can take the following form:

ΔF(λi → λi+1) = − 1

β
ln

Ng∏

g=1

〈exp
(
−βΔH

(g)
i

)
〉i (5.30)

=
Ng∑

g=1

− 1

β
ln〈exp

(
−βΔH

(g)
i

)
〉i

=
Ng∑

g=1

ΔF(g)(λi → λi+1)

where ΔF(g)(λi → λi+1) is the contribution to the total free energy from the term
g of the Hamiltonian decomposition, which is calculated as:

ΔF(g)(λi → λi+1) = − 1

β
ln〈exp

(
−βΔH

(g)
i

)
〉i (5.31)

To estimate the error made by the two assumptions given by Eqs. (5.27)
and (5.29), in Bren et al. (2007), the Thiele cumulants theory is used, which is
briefly discussed in the following.

Any function f (x) can be expressed in power series as:

f (x) = 1 +
∞∑

n=1

μn

n! x
n (5.32)

where (!) denotes the factorial of an integer number, such as n! = 1 · 2 · · · · · n.
Furthermore, the function ln f (x) can be expressed in power series as:

ln f (x) =
∞∑

n=1

κn

n! x
n (5.33)

where κn are the so-called the Thiele cumulants:
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κn = n!
∑

s

S(n
(s)
1 , · · · , n(s)Ks) (5.34)

where the sum runs over all sequences

S(n
(s)
1 , · · · , n(s)Ks

) = (−1)−1+∑Ks
k=1 n

(s)
k

(
−1 +

Ks∑

k=1

n
(s)
k

)
! (5.35)

×
Ks∏

k=1

(μk

k!
)n(s)k

n
(s)
k !

and

Ks∑

k=1

(
k · n(s)k

)
= n

Using Eq. (5.32), then Eq. (5.31) can be written as

ΔF(g)(λi → λi+1) = − 1

β
ln〈

∞∑

n=0

(−β)n

n! (ΔH
(g)
i )n〉i (5.36)

= − 1

β
ln

∞∑

n=0

(−β)n

n! 〈(ΔH
(g)
i )n〉i

= − 1

β
ln

(
1 +

∞∑

n=1

(−β)n

n! 〈(ΔH
(g)
i )n〉i

)

= − 1

β

∞∑

n=1

(−β)n

n! κ
(g)
n

where the linearity of the expectation value is assumed, that is the expected value
of the sum of terms is equal to the sum of the expectations of each term of the sum.
Here, κ(g)

n is given by Eqs. (5.34) and (5.35) with μk = 〈(ΔH
(g)
i )k〉i . Similarly, we

can obtain in terms of the Thiele cumulants, the total free energy for the transition
λi → λi+1 as:

ΔF(λi → λi+1) = − 1

β

∞∑

n=1

(−β)n

n! κn (5.37)

κn is given by Eqs. (5.34) and (5.35) with μk = 〈(ΔHi)
k〉i .
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Then, the error of order n, which gives an estimate of the error due to assumption
of additive property of the Hamiltonian and independence between the terms of the
decomposition, is given as

εn(λi → λi+1) = ΔF(λi → λi+1)−
Ng∑

g=1

ΔF(g)(λi → λi+1) (5.38)

= − 1

β

∞∑

n=1

(−β)n

n! κn −
Ng∑

g=1

− 1

β

∞∑

n=1

(−β)n

n! κ
(g)
n

= − 1

β

∞∑

n=1

(−β)n

n!

⎛

⎝κn −
Ng∑

g=1

κ
(g)
n

⎞

⎠

We can calculate κn and κ
(g)
n for n = 1 and n = 2. For n = 1, we have the

following sequence of {nsk}:

{n(1)1 } = {1}

Thus, there is just one sequence. Then, from Eq. (5.35) we obtain:

κ1 = 1!
(
(−1)−1+1(−1 + 1)!μ1

1!
)
= μ1 = 〈ΔHi〉i (5.39)

and

Ng∑

g=1

κ
(g)

1 = 1!
(
(−1)−1+1(−1 + 1)!μ1

1!
)
= μ1 =

Ng∑

g=1

〈ΔH
(g)
i 〉i (5.40)

= 〈
Ng∑

g=1

ΔH
(g)
i 〉i = 〈ΔHi〉i

where the linearity of the expectation value is used. Combining, Eqs. (5.39)
and (5.40), we obtain the first order error as:

ε1(λi → λi+1) = 0

For n = 2, we have the following sequence of integers {n(s)k }:

{n(1)1 , n
(1)
2 } = {2, 0} (5.41)

{n(2)1 , n
(2)
2 } = {0, 1}
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Then, the Thiele cumulants are given as:

κ2 = 2!
(
(−1)−1+2+0(−1 + 2 + 0)! (μ1/1!)2

2!
(μ2/2!)0

0! (5.42)

+ (−1)−1+0+1(−1 + 0 + 1)! (μ1/1!)0

0!
(μ2/2!)1

1!
)

= −μ2
1 + μ2

Substituting Eq. (5.42) into Eq. (5.38), we can obtain the second order error as:

ε2(λi → λi+1) = − 1

β

2∑

n=1

(−β)n

n!

⎛

⎝κn −
Ng∑

g=1

κ
(g)
n

⎞

⎠ (5.43)

= ε1(λi → λi+1)− 1

β

(−β)2

2!

⎛

⎝κ2 −
Ng∑

g=1

κ
(g)

2

⎞

⎠

= 0 − β

2

(
− (〈ΔHi〉i )2 + 〈(ΔHi)

2〉i

−
Ng∑

g=1

(
−

(
〈ΔH

(g)
i 〉i

)2 + 〈
(
ΔH

(g)
i

)2〉i
)⎞

⎠

= β

2

⎛

⎜⎝

⎛

⎝
Ng∑

g=1

〈ΔH
(g)
i 〉i

⎞

⎠
2

− 〈
⎛

⎝
Ng∑

g=1

ΔH
(g)
i

⎞

⎠
2

〉i

−
Ng∑

g=1

(
〈ΔH

(g)
i 〉i

)2 +
Ng∑

g=1

〈
(
(ΔH

(g)
i

)2〉i
⎞

⎠

= β

Ng∑

g=1

Ng∑

g′>g

(
〈ΔH

(g)
i 〉i〈ΔH

(g′)
i 〉i

− 〈ΔH
(g)
i ΔH

(g′)
i 〉i

)

where the following binomial formulas were used:

⎛

⎝
Ng∑

g=1

〈ΔH
(g)
i 〉i

⎞

⎠
2

=
Ng∑

g=1

(
〈ΔH

(g)
i 〉i

)2
(5.44)

+ 2

Ng∑

g=1

Ng∑

g′>g

〈ΔH
(g)
i 〉i〈ΔH

(g′)
i 〉i
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〈
⎛

⎝
Ng∑

g=1

ΔH
(g)
i

⎞

⎠
2

〉i =
Ng∑

g=1

〈
(
ΔH

(g)
i

)2〉i

+ 2

Ng∑

g=1

Ng∑

g′>g

〈ΔH
(g)
i ΔH

(g′)
i 〉i

and the linearity of the expectation value.
It can be seen that if the decomposition terms are independent, then

〈ΔH
(g)
i 〉i〈ΔH

(g′)
i 〉i = 〈ΔH

(g)
i ΔH

(g′)
i 〉i (5.45)

and the second order error is zero, ε2(λi → λi+1) = 0. It is worth noting that higher
orders of the error include cross terms of higher order, such as

(
〈ΔH

(g)
i 〉i

)α (
〈ΔH

(g′)
i 〉i

)ν − 〈
(
ΔH

(g)
i

)α (
ΔH

(g′)
i

)ν〉i (5.46)

where α and ν are integers, which are different from zero, if there are cross terms
in the force fields, or if the decomposition terms are dependent. Therefore, the error
increases with Ng and the number of the cross terms or dependent terms included
in the decomposition.

An alternative use of the free energy decomposition is to use the thermodynamic
integration method with the following Hamiltonian decomposition:

Hλ(rN,pN) = (1 − λ)

Ng∑

g=1

H
(g)

1 (rN,pN)+ λ

Ng∑

g=1

H
(g)

2 (rN,pN) (5.47)

=
Ng∑

g=1

(
(1 − λ)H

(g)

1 (rN,pN)+ λH
(g)

2 (rN,pN)
)

=
Ng∑

g=1

H
(g)
λ (rN,pN)

where

H
(g)
λ (rN,pN) = (1 − λ)H

(g)

1 (rN,pN)+ λH
(g)

2 (rN,pN) (5.48)

Here, the assumption is that the same terms of the Hamiltonian decomposition exist
in both H1(rN,pN) and H2(rN,pN). Then, using Eq. (5.19), we obtain

ΔF(g) =
∫ 1

0
〈∂H

(g)
λ

∂λ
〉λ dλ (5.49)
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and

ΔF =
Ng∑

g=1

ΔF(g) (5.50)

5.3 Implicit Models for Free Energy Calculations

Computer simulations combined with implicit solvation models, such as Poisson-
Boltzmann and Generalized Born methods, are widely used in free energy cal-
culations, known in the literature, respectively, as Molecular Mechanics Poisson-
Boltzmann Surface Area (MM/PBSA) and Molecular Mechanics Generalized Born
Surface Area (MM/GBSA) (Kollman et al. 2000; Wang et al. 2001). An advantage
of these two methods is the rigorous decomposition of free energy into contributions
coming from the different group of atoms or even type of interactions (Gohlke et al.
2003).

The binding free energy between two (bio)molecules (e.g., proteins, protein
and ligand, protein and DNA, etc.) A and B in water is evaluated based on the
thermodynamic cycle depicted in Fig. 5.6.

In this approach binding free energy is estimated as a sum of some reference
phase (often gas phase) energies, solvation free energies, and entropic contributions
averaged over a series of snapshots from molecular dynamics simulations:

ΔGw
b = 〈ΔG

g
b〉 + 〈ΔGsolv

AB 〉 − 〈ΔGsolv
A 〉 − 〈ΔGsolv

B 〉 (5.51)

where 〈ΔG
g
b is the binding energy in the reference (e.g. gas) phase and 〈ΔGsolv

AB 〉,
〈ΔGsolv

A 〉, 〈ΔGsolv
B 〉 are the solvation free energies of (bio)molecules A, B and their

Fig. 5.6 Thermodynamic
cycle for absolute binding
free energy calculation of
protein-protein
association.ΔGsolv

A , ΔGsolv
B ,

and ΔGsolv
AB are solvation free

energies of A, B and AB,
respectively. ΔG

g
b and ΔGw

b

are binding free energies in
gas phase and condensed
phase (e.g., water)
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complex AB, respectively. The binding energy in the reference phase is a sum of
molecular mechanics force field used and entropic terms as:

〈ΔG
g
b〉 = 〈ΔEMM

elec 〉 + 〈ΔEMM
vdw 〉 + 〈ΔEMM

int 〉 + T 〈ΔS〉 (5.52)

Here, the first three terms characterize the change on electrostatic, van der Waals
and internal molecular mechanics energy, respectively, upon binding calculated in
the reference phase (e.g., gas phase). The last term is the change in configuration
entropy associated with (bio)molecular motions, and it is the sum of conformational,
translational and rotational entropy terms. The solvation energy is calculated using
the continuum solvent models as discussed in the following sections. In our
notations, 〈· · · 〉 denotes an ensemble average.

Combinations of computer simulations with implicit solvent continuum models
for free energy calculations have been proposed previously (Gilson and Honig
1988). The methods are applied in estimating the binding free energy of protein-
protein binding (Gohlke et al. 2003) and protein-ligand binding (Kollman et al.
2000; Massova and Kollman 2000).

These approaches can also be implemented in calculation of average relative
binding free energy change upon the mutation of a residue i to alanine, j ,
〈ΔΔGw

b (i → j)〉:

〈ΔΔGw
b (i → j)〉 = 〈ΔGw

b (j)〉 − 〈ΔGw
b (i)〉 (5.53)

where 〈ΔGw
b (i)〉 and 〈ΔGw

b (j)〉 are the binding free energies of the wild type and
mutated system, respectively.

5.3.1 Empirical Solvation Models

The statistical mechanics models of the macromolecular solvation have shown to
be difficult, and thus several different empirical models have also been developed.
In the following, we will discuss these approaches, used in the free energy
decomposition.

In general, the total solvation free energy is calculated as a sum of two
contributions, namely the non-polar solvation free energy and polar (electrostatic)
solvation free energy:

ΔGsolv = ΔGsolv
nonpolar +ΔGsolv

elec (5.54)

Here, ΔGsolv
nonpolar is the non-polar contribution and ΔGsolv

elec is the electrostatic
contribution to solvation free energy, discussed in the following sections. Note that
ΔGsolv is just the Helmholtz free energy. To obtain the Gibbs free energy, the term
pΔV must be added, which usually is a small term because the changes on the
volume are small.
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5.3.1.1 Implicit Nonpolar Solvation Free Energy

The nonpolar contribution of the solvation free energy associates with attractive
short-range dispersion interactions for creating a cavity in a solvent where the solute
resize, and solute-solvent dispersion interactions:

ΔGsolv
nonpolar = ΔGsolv

cav +ΔGsolv
vdW (5.55)

ΔGsolv
cav is the free energy cost for creation of a cavity in solvent with size of

macromolecule, plus the reorganization energy (change on solvent-solvent energy)
and entropic cost of solvent around the cavity, and ΔGsolv

vdW is the free energy cost
of compensating for solute-solvent van der Waals dispersion interactions. Note that
both terms have opposite signs and are anti-correlated with each other. Besides,
both these interactions include only the first solvent shell. Moreover, the non-polar
contribution of the solvation free energy includes the entropic contribution due to
the changes in solvent structures near the solute. The length-scale dependence of the
cavity creation and solvent screening of solute-solvent dispersion interactions have
to be properly described to have an accurate representation of the implicit modeling
of non-polar solvation free energy.

The Atomic Solvation Parameter (ASP) model is the simplest one, in which
the cavity non-polar contribution of the solvation free energy is the sum of atomic
contributions (Eisenberg and McLachlan 1986). In ASP model, the non-polar term
of the solvation free energy of an atom (or group of atoms) is assumed to be
proportional to its molecular surface area, Ai , and it is given by

ΔGsolv
cav =

∑

i

γiAi (5.56)

where the proportionality constant γi depends on the type of atom, calibrated using
the experimental data by a fitting procedure. In most of Generalized Born Molecular
Surface Area (GB/SA) and Poisson-Boltzmann Molecular Surface Area (PB/SA)
models, further approximations apply by assuming a universal Γ value for all atom
types, and Eq. (5.56) is as:

ΔGsolv
cav = ΓA (5.57)

A is the total molecular surface area of the macromolecule. This relationship
showed to be fairly accurate by investigating the experimental solvation free
energies of different molecular systems, such as linear alkanes and neutral organic
compounds (Eisenberg and McLachlan 1986; Ooi et al. 1987; Simonson and
Brunger 1994; Chothia 1974), or by theoretical and computational studies of non
polar solvation and hydrophobic interactions (Nemethy and Scheraga 1962; Pierotti
1976; Ashbaugh et al. 1999; Raschke et al. 2001). Often, the coefficient Γ and
parametrization of the surface effects in Eq. (5.57) are carefully designed also to
include short-range effects, dominated by the first solvation shell, such as nonlinear
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response of solvent to the local electric field near solute and charge transfer to
or from solvent (Chen and Brooks III 2008) (and the reference therein Cramer
and Truhlar 1999). Equation (5.57) is also used to model other effects rather
than non-polar contributions to solvation free energy, for instance, as a measure
of thermodynamic parameters of peptide hydration in Ooi et al. (1987). Thus,
based on the empirical nature of the factor Γ , different values have been used
for its parametrization, different underlying effects, including macromolecular
force field, electrostatic solvation model, and choice of the macromolecule-solvent
boundary (Chen and Brooks III 2008). Indeed, the values of Γ ranging from 5 to

7 cal mol−1 Å
−2

(Still et al. 1990; Sitkoff et al. 1994; Simonson and Brunger 1994),

or from 40 to 70 cal mol−1 Å
−2

(Tanford 1979; Sharp et al. 1991). This wide range
of the values of Γ is because of different models used to represent the molecular
surface (Chen and Brooks III 2008). However, small values of Γ indicate that
molecular surface contribution has only a small impact on the free energy changes
due to large-scale conformation changes.

Note that a precise definition of the solute-solvent interface is a valuable physical
property for both non-polar and electrostatic (as shown in the next section) solvation
free energies. Although, molecular surface non-polar term contains empirical
corrections to compensate for various effects related to the first hydration shell
and force field terms. Moreover, the optimal choice of the solute-solvent interface
boundary for the non-polar contribution to the solvation free energy may not
necessarily coincide with that of the electrostatic contribution to solvation free
energy.

Different methods have been introduced to calculate the molecular surfaces (Lee
and Richards 1971; Richards 1977, 1985; Connolly 1983a,b, 1985; Vorobjev and
Hermans 1997). In general, the molecular surface can be seen as a set of overlapping
spheres, each having the van der Waals radius of its constituent atom, which is the
so-called van der Waals surface (see Fig. 5.7a). The so-called solvent-accessible
surface of a molecule is defined as the van der Waals envelope of a molecule
expanded by the radius of the solvent sphere about each atom center, as shown
in Fig. 5.7b (Lee and Richards 1971; Richards 1977). Then, the so-called molecular
surface which is defined as the contour drawn by a sphere of radius rp, representing
the solvent molecule, rolling over a set of the van der Waals beads centered
at the atomic positions, as shown in Fig. 5.7c (Connolly 1983a,b, 1985). More
recently (Vorobjev and Hermans 1997), a so-called smooth invariant molecular
surface is also defined using a smoothing sphere with radius rs rolling over the
generated molecular surface. The molecular surface comprises the convex spherical
patches, saddle-shaped toroidal patches, and the concave patches, which then is
partitioned in a set of triangles (Connolly 1983a,b, 1985).

Note that by definition, the solvent-accessible surface has no reentrant sections,
and hence the molecule comprises only convex spherical patches. That may yield
a loss of information since the ratio of the contact-to-reentrant surface could be a
measure of molecular surface roughness (Richards 1985). Besides, the choice of
the probe radius will also influence the value of the area of the molecular surface
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Fig. 5.7 Different molecular surface representations: (a) the van der Waals surface; (b) the
solvent-accessible surface; and (c) the molecular surface

in each case. Use of a small probe radius reveals a large number of features from
the molecular surface, and for rp = 0, the solvent-accessible surface is equal to
the molecular surface. Since the probe sphere mimics the solvent molecule, i.e.,
water molecule, the smallest physically accepted radius is 1.4 Å (the radius of a
water molecule). As the probe radius increases, the molecular surface and solvent-
accessible surface become smoother, and for rp = ∞, the molecular surface is
the convex hull of the set of atomic spheres. From the geometrical point of view,
the molecular surface tends towards a finite limiting value as the probe radius
increases, whereas the solvent-accessible surface tends towards infinite. Therefore,
the molecular surface may be a better representation of the surface of a molecule.
The calculation of the surface of a molecule is a geometrical problem, and hence
the accuracy of this calculation will depend on a geometrical representation of
the molecular surface. To accurately represent the surface of a molecule, several
conditions are required to be satisfied (Vorobjev and Hermans 1997): maximum
homogeneity of dot distribution, a smoothing surface near the singular points,
small changed on the dot density, independence on the rotation of molecule and
stability with changing the molecular conformation. The integration of functions
over the molecular surface, as required here, require a numerical representation of
the molecular surface as a set of

{(xi, yi, zi) ,ni , Δσi}

where (xi, yi, zi) , ni , Δσi are, respectively, the coordinates, normal vector and
area of a small element of the molecular surface.

Then, Eq. (5.57) can be written as

ΔGsolv
cav = Γ

T∑

t=1

Δσt (5.58)
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where the sum runs over all triangle molecular surface patches T . This term will
represent the non-polar contribution to the cavity creation, and the reorganization
solvent energy and entropy.

5.3.1.2 Implicit Dielectric Surface Boundary Free Energy Term

Here, we are going to consider another term to the free energy decomposition due to
the forces acting on the dielectric surface boundary between the solvent and solute,
namely ΔGsolv

diel .
In order to evaluate ΔGsolv

diel , we are going to calculate the forces acting on the
dielectric surface boundary between the solvent and solute using the relationship
of forces on the dielectric medium and the Maxwell stress tensor σ . The following
expression is going to be used to evaluate the forces acting on an elementary volume
of dielectric due to the electrostatic forces of charge distribution in macromolecule:

f = ρf E + ε0

2
∇

(
E · Eg

dε

dg

)
− ε0

2
(E · E)∇ε (5.59)

where ρf is the fixed charge density in dielectric and g is the mass density. D and
E are the electric displacement and field vectors, respectively, related as

D = ε0εE

In Eq. (5.59), the first term gives the force acting on the fixed charges in dielectric,
the second term is related to inhomogeneity of the field, and the third term is related
to the inhomogeneity of dielectric media. Ignoring the second term and using the
Maxwell equation ∇ · D = ρf , then Eq. (5.59) can be written as

f = (∇ · D)E − ε0

2
(E · E)∇ε (5.60)

= ∇ · (D ⊗ E)− (D · ∇)E − ε0

2
∇(εE · E)+ ε0(εE · ∇)E

= ∇ · (D ⊗ E)− (D · ∇)E − 1

2
∇(D · E)+ (D · ∇)E

= ∇ · (D ⊗ E)− 1

2
∇(D · E)

= ∇ ·
[

D ⊗ E − 1

2
(D · E)I

]

where D ⊗ E is a tensor of second rank with elements (D ⊗ E)ij = DiEj , for
i, j = 1, 2, 3, and I is the unitary diagonal tensor:

Iij =
{

0 if i �= j

1 if i = j
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Note that Eq. (5.60) is also valid for the dielectric regions where ρf = 0. In such
case,

∇ · (D ⊗ E)− (D · ∇)E = 0

or

∇ · (D ⊗ E) = (D · ∇)E

Therefore, for the regions where ρf = 0 (e.g., at the dielectric boundary between
solvent-solute), the density of force acting on dielectric media is

f = −ε0

2
(E · E)∇ε (5.61)

= −ε0

2
∇(εE · E)+ ε0(εE · ∇)E

= −1

2
∇(D · E)+ (D · ∇)E

= ∇ · (D ⊗ E)− 1

2
∇(D · E)

= ∇ ·
[

D ⊗ E − 1

2
(D · E)I

]

Defining the Maxwell stress tensor σ as

σ = ε0εE ⊗ E − 1

2
ε0ε(E · E)I (5.62)

Eq. (5.60) can then be written as

f = ∇ · σ (5.63)

Physically, the Maxwell stress tensor is the force acting on the unit area (or stress),
that is, σij is the force per unit area in the i-th direction acting on the surface element
oriented in the j -th direction. Thus, the diagonal elements (σxx, σyy, σzz) represent
the stresses and off-diagonal elements are the shear stresses. Time-average force
acting on the dielectric body is

F =
∫

V

fdV =
∫

V

∇ · σdV

The volume integral can be expressed as the surface integral surrounding the
dielectric body by applying the Gauss’s theorem,
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F =
∮

S

σ · ndS (5.64)

where n is the unit vector outward the surface element dS. Since the normal
component of the electrical field E is discontinuous at the boundary between solvent
and solute media, the product σ · n in Eq. (5.64) exhibits a jump. Therefore, the
difference between σ · n in the two media will give the surface force FS , which is a
measure of the force per unit of area, which can be written as

FS = Pn + St t =
(
σ (2) − σ (1)

)
· n (5.65)

where σ (2) and σ (1) are the Maxwell stress tensors defined in the solute and solvent
media, respectively. P is the normal stress to the molecular solute surface and St is
the shear stress, which is the tangent component of FS . t is the tangential unit vector
to the element surface dS. The normal stress and the shear stress are defined as

P = FS · n =
3∑

i=1

FS,ini (5.66)

St = FS · t =
3∑

i=1

FS,i ti

Using Eq. (5.65), we can determine

FS,i =
3∑

j=1

(
σ
(2)
ij − σ

(1)
ij

)
nj (5.67)

Combining expression for P from Eq. (5.66) with FS,i from Eq. (5.67), we obtain

P =
3∑

i=1

⎛

⎝
3∑

j=1

(
σ
(2)
ij − σ

(1)
ij

)
nj

⎞

⎠ ni (5.68)

=
3∑

i=1

3∑

j=1

(
D

(2)
i E

(2)
j − 1

2
D(2)E(2)δij −D

(1)
i E

(1)
j

+ 1

2
D(1)E(1)δij

)
njni

= D(2)
n E(2)

n − 1

2
D(2)E(2) −D(1)

n E(1)
n + 1

2
D(1)E(1)
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Using the dielectric boundary conditions

E
(1)
t = E

(2)
t , D(1)

n = D(2)
n , εwE

(1)
n = εmE

(2)
n

under the assumption that there is no free charge at the dielectric boundary surface,
Eq. (5.68) reduces to

P = ε0εmE
(2)
n E(2)

n − ε0εm

2

(
E(2)

n E(2)
n + E

(2)
t E

(2)
t

)
(5.69)

− ε0εmE
(2)
n

εm

εw
E(2)

n + 1

2
ε0εw

(
E(1)

n E(1)
n + E

(1)
t E

(1)
t

)

= ε0εm

2
E(2)

n E(2)
n − ε0εm

2
E

(2)
t E

(2)
t

− ε0
ε2
m

εw
E(2)

n E(2)
n + ε0εw

2

(
εm

εw

)2

E(2)
n E(2)

n + ε0εw

2
E

(2)
t E

(2)
t

= ε0

2
(εw − εm)

[(
εm

εw
− 1

)
E2

n + E2
]

where En and E are the normal component and total electric field on the second
medium, i.e., solute.

Similarly, the tangential component St is determined as

St =
3∑

i=1

⎛

⎝
3∑

j=1

(
σ
(2)
ij − σ

(1)
ij

)
nj

⎞

⎠ ti (5.70)

=
3∑

i=1

3∑

j=1

(
D

(2)
i E

(2)
j − 1

2
D(2)E(2)δij −D

(1)
i E

(1)
j

+ 1

2
D(1)E(1)δij

)
nj ti

= D
(2)
t E(2)

n −D
(1)
t E(1)

n

= ε0εmE
(2)
t E(2)

n − ε0εwE
(1)
t E(1)

n

= ε0εmE
(2)
t E(2)

n − ε0εmE
(2)
t E(2)

n

= 0

where εm and εw are the solute and solvent dielectric constants, respectively. Here,
En and Et are the components of electric field in solute medium. These results
indicate that only the normal component (normal stress) of the surface force exist.
On the other hand, the tangential component (shear stress) vanishes because fixed
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charge density is zero close to the dielectric boundary surface, and only the surface
polarization induced charges exist in this boundary.

Based on the new formalism, the electrostatic contribution to the cavity creating
in solvent can be calculated as the following:

ΔGsolv
diel = PΔV =

∫ ([∮

S

(σ (m) − σ (w)) · n dS

]
· n

)
dr (5.71)

=
T∑

i=1

(FS,i · ni )δVi

=
T∑

i=1

PiδVi

where δVi is an element volume of the solute, calculated as

δVi =
[(

rs,i − rc
) · ni

]
Δσi

where rc is the solute centre of gravity defined as

rc =
∑T

i=1 rs,iΔσi
∑T

i=1 Δσi

Note that Pi is the normal stress at surface point i given by expression in Eq. (5.69),
where En and E are the normal electric field component and total electrical field
in the surface solute-solvent interface at the surface point i calculated in the solute
side.

5.3.1.3 Implicit van der Waals Free Energy Term

An approach for evaluating the van der Waals contributions is introduced to non-
polar solvation free energy using a continuum model. That is valid for interpreting
the solvent screening of solute-solvent dispersion interactions (Levy et al. 2003).
According to this model, the solvent (e.g., water) is a simple single site (e.g.,
oxygen) with a constant density in the region outside the solute volume, and the
dispersion interaction energy between each atomic site of the solute and solvent is
evaluated as a volume integral:

ΔGsolv
vdW = ρw

M∑

i=1

∫

solvent

u
(vdW)
i,w (| r − ri |) d3r (5.72)
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where ρw is the solvent bulk number density at standard conditions, for example

for water ρw = 0.033428 Å
−3

, u
(vdW)
i,w is the dispersion interaction potential

between the atom i of the solute and solvent, which is defined as the attractive part
of the following decomposition of the Lennard-Jones potential (Levy et al. 2003;
Gallicchio and Levy 2004):

u
(vdw)
i,j (r) =

⎧
⎨

⎩

−εij , r ≤ 21/6σij

4εij

[(σij
r

)12 −
(σij

r

)6
]
, r > 21/6σij

(5.73)

and

u
(rep)
i,j (r) =

⎧
⎨

⎩
4εij

[(σij
r

)12 −
(σij

r

)6
]
+ εij , r ≤ 21/6σij

0, r > 21/6σij

(5.74)

Thus, Eq. (5.72) can be written as

ΔGsolv
vdW = ρw

M∑

i=1

∫

Ωw

(
Ai

| r − ri |12 − Bi

| r − ri |6
)
d3r (5.75)

for | r − ri |≥ 21/6σiw, and

ΔGsolv
vdW = −ρw

M∑

i=1

∫

Ωw

εiwd
3r (5.76)

for | r − ri |< 21/6σiw. Here, Ai = 4εiwσ 12
iw and Bi = 4εiwσ 6

iw are the force
constants, which depend on the atom i and solvent site of molecule (e.g., oxygen of
water molecule) determined using the arithmetic rules for the Lennard-Jones type
of potential:

εiw = √
εiεw, σiw = σi + σw

2

Ωw denotes the entire solvent volume.
The integral, in principle, can be evaluated using different approaches, such as

surface integral (Zacharias 2003), by a pair-wise descreening approximation (Gal-
licchio and Levy 2004), or directly using the numerical quadrature techniques (Lee
et al. 2002).

Another approach is introduced, converting the above solvent volume integrals
into surface ones, where this characterizes the closed surface enclosing the solute
volume. It can be seen that calculation of ΔGvdw includes estimation of the integrals
of the following form:
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I =
∫

Ωw

1

| r − ri |n d
3r (5.77)

where integration is performed over solvent volume. This integral can be split into
two terms, where the first term is the integral over entire space and the second one
over solute volume as:

I =
∫

Ω

1

| r − ri |n d
3r −

∫

Ωs

1

| r − ri |n d
3r (5.78)

where Ω is the all space volume and Ωs is the solute volume. The first term of
integral can be further split into two other terms. The first is the integral over volume
of the i-th solute atom and the second term is over all space excluding the volume
of that atom. Thus, we obtain:

I =
∫

V0

1

| r − ri |n d
3r +

∫

Ω−V0

1

| r − ri |n d
3r (5.79)

−
∫

Ωs

1

| r − ri |n d
3r

We can now use the Gauss’s theorem:
∫

Ω

∇ · Ad3r =
∮

S

A · n dS

where Ω is the integration volume and S is surface enclosing that volume. n is the
outward unit vector to the surface element dS. In our case, when

∇ · A = 1

| r − ri |n

it can be found that

A = 1

3 − n
· r − ri
| r − ri |n

Therefore, we obtain that

I = 1

3 − n

∮

S0

(r − ri ) · n0

| r − ri |n dS (5.80)

+ 1

3 − n

∮

S0

(r − ri ) · ñ0

| r − ri |n dS + 1

3 − n

∮

S∞

(r − ri ) · n∞
| r − ri |n dS

− 1

3 − n

∮

S

(r − ri ) · n
| r − ri |n dS
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where S is the molecular surface of solute, S0 is spherical surface of i-th solute atom,
S∞ is the surface at the infinity of solvent, n0 is the outward unit vector normal to
dS element of S0 surface and ñ0 is the inward unit vector normal to dS element of
S0 surface, which is given as

ñ0 = −n0

and hence, the first to integral cancel out. Here, n∞ is the outward unit vector normal
to dS element of S∞ surface and n is the outward unit vector normal to dS element
of S surface. At the infinity we have

1

| r − ri |n → 0

and hence the third integral is zero. Therefore, we can finally write that

I = 1

n− 3

∮

S

(r − ri ) · n
| r − ri |n dS (5.81)

Thus, ΔGsolv
vdw from Eqs. (5.75) and (5.76) takes the following form for | r−ri |≥

21/6σiw:

ΔGsolv
vdw =

M∑

i=1

ρwAi

9

∮

S

(r − ri ) · n
| r − ri |12 dS −

M∑

i=1

ρwBi

3

∮

S

(r − ri ) · n
| r − ri |6 dS (5.82)

and for | r − ri |< 21/6σiw:

ΔGsolv
vdw =

M∑

i=1

ρwεiw

3

∮

S

(r − ri ) · n dS (5.83)

Since the molecular surface of solute can be represented by a set discrete surface
elements, we can rewrite the above surface integrals as summations as shown in the
following. For | rt − ri |≥ 21/6σiw:

ΔGsolv
vdw =

M∑

i=1

ρwAi

9

T∑

t=1

(rt − ri ) · nt

| rt − ri |12
Δσt (5.84)

−
M∑

i=1

ρwBi

3

T∑

t=1

(rt − ri ) · nt

| rt − ri |6 Δσt
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and for | rt − ri |< 21/6σiw:

ΔGsolv
vdw =

M∑

i=1

ρwεiw

3

T∑

t=1

(rt − ri ) · ntΔσt (5.85)

Eqs. (5.58), (5.84) and (5.85) can be used to calculate the non-polar contributions
to the cavity creation in the solvent to resize the macromolecule, and Eq. (5.71) can
be used to calculate the electrostatic contribution to cavity creation.

In the following, we are going to discuss the methods used to calculate the
electrostatic contribution to the solvation free energy, namely the so-called Poisson-
Boltzmann model and the Generalized Born approximation.

5.3.1.4 The Poisson-Boltzmann Model

The Poisson-Boltzmann equation was described in these references Gouy (1910)
and Chapman (1913). They derived a relation between the chemical potential and
the force acting on small adjacent volumes in an ionic solution between two plates
at a different voltage. Later, the approach was generalized by Debye and Hückel
(1923), applying their work to the theory of ionic solutions.

Gronwall et al. (1928) provided the solutions to the nonlinearized Poisson-
Boltzmann equation as a function of the powers of the inverse of the dielectric
constant as coefficients. Onsager (1933) formulated the statistical mechanics basis
of the Poisson-Boltzmann and Fowler and Guggenheimer (1939) in terms of the
potential of mean force.

Kirkwood (1934a) formulated some approximations from the formalism, point-
ing out that the Poisson-Boltzmann method used the assumption that it is possible
to replace the potential of mean force with the mean electrostatic potential. Due to
the success of the theory on explaining the behavior of ionic solutions, the Poisson-
Boltzmann approach started to apply in other fields such as colloid chemistry, and
later the method was used in calculating the free energy of interacting particles
based on the framework of Derjaguin and Landau (1941), and Verwey and Overbeek
(1948).

Kirkwood (1934b), Linderstrom-Lang (1924), and Nozaki and Tanford (1967)
formulated the first, simple electrostatic models of globular proteins, and for
DNA and other linear polyelectrolytes the cylindrical symmetric models were
used by Lifson and Katchalski (1954), Alfrey et al. (1951), Katchalski (1971)
and Manning (1978). All these models use either the Poisson-Boltzmann equation
or its linear approximation leading to high accuracy results. Initially, the models
used simple shape molecular models, such as spheres for proteins and rods for
DNA. During the 1980s the models improved by developing methods for solving
the Poisson-Boltzmann equation for any arbitrary shape using the finite difference
algorithm in software such as DelPhi, Grasp, and UHBD, allowing the study of
electrostatic models to the atomic level.
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Later, also fast approaches for dealing with electrostatic interactions were
developed by Lazaridis and Karplus (1999), Simonson (2001), and Roux and
Simonson (1999).

In the Poisson-Boltzmann approach, all the macromolecular atoms are consid-
ered explicitly as particles with partial point charges at the atomic positions, and
the dielectric constant of the macromolecule itself is often considered to be low,
typically in the range 2–4. The solvent environment surrounding the macromolecule
is taken implicitly into account as a dielectric medium with the dielectric constant
of about 80. Sometimes, a solvent-macromolecule interaction model used a surface
model with a surface tension typically 5–70 cal Å

−2
(Fogolari et al. 2002) using

the models described in the previous section. The macromolecular dielectric value
does not take into account the rearrangement of polar and charged amino acids with
external electric fields, which could result into a larger dielectric constants (Gilson
and Honig 1986; Simonson 1998). For example, Schutz and Warshel (2001)
suggested that the increase of the dielectric can compensate for the need for group
re-orientations.

Let us consider first a homogeneous medium with dielectric constant and with
no external charges (i.e., ρ = 0). The Maxwell equation for the medium will give

∇ · D = 0 (5.86)

where D is the electric displacement vector. Knowing the relation between the vector
D and the electrical field vector E for the approximation of linear polarised medium,

D = ε0εE

and the relation between the electrostatic potential φ and the vector E

E = −∇φ

we get

∇ · (∇φ(r)) = 0 (5.87)

or

Δφ(r) = 0 (5.88)

which is known as Laplace equation.
If the external charges are present (i.e., ρ �= 0), for example a macromolecule is

immersed in the solvent medium, Eq. (5.86) is written as

∇ · D = ρ(r) (5.89)
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which leads to the so-called Poisson equation

ε∇ · (∇φ(r)) = −ρ(r)
ε0

(5.90)

In the general case of the nonhomogeneous medium, the polarised charges created
at the dielectric boundaries must be taken into account as well (Jackson 1962), and
Eq. (5.90) is modified as the following:

∇ · (ε(r)∇φ(r)) = −ρ(r)
ε0

(5.91)

where ρ is the sum of the distribution of the macromolecule fixed charge density
ρm(r) and ionic charge density ρI (r):

ρ(r) = ρm(r)+ ρI (r)

In non homogeneous interacting particles system, density of a particle at any point
r can be written as

σI,i(r) = gi(r)σ 0
I,i (r) (5.92)

where σ 0
I,i (r) is the particle density of the same system considered as ideal gas (i.e.,

non-interacting particle system), and gi(r) is the i-th particle distribution, which is
taken to follow the Boltzmann distribution

gi(r) = exp (−βWi(r)) (5.93)

In Eq. (5.93), Wi(r) is the potential of mean force for the particle i. The assumption
made here is that the potential of mean force is equal to the average electrostatic
potential at the point of the charge multiplied by the charge of particle:

Wi(r) = qiφ(r)

where qi = zie with zi being its valency and e being the charge of proton.
Thus, Eq. (5.92) can be written as

σI,i(r) = σ 0
I,i (r) exp (−βqiφ(r)) (5.94)

Then, the charge density is given as

ρI (r) =
∑

i

qiσI,i(r) =
∑

i

qiσ
0
I,i (r) exp (−βqiφ(r)) (5.95)
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where

σ 0
I,i (r) = c∞i λ(r)

where c∞i is the bulk constant concentration of the ith ionic species, satisfying the
condition of the electrostatic neutrality:

∑

i

qic
∞
i = 0

λ(r) is the accessibility of ions at point r (i.e., λ(r) = 0 in the region inside the
macromolecule and λ(r) = 1 in the solvent region). Therefore, we can write

ρI (r) = λ(r)
∑

i

qic
∞
i exp (−βqiφ(r)) (5.96)

Using Eq. (5.96), the Poisson equation (see Eq. (5.91)) takes the form of the so-
called nonlinear Poisson-Boltzmann equation

∇ · (ε(r)∇φ(r))+ λ(r)
ε0

∑

i

qic
∞
i exp (−βqiφ(r)) = −ρm(r)

ε0
(5.97)

For an electrostatic neutral solvent, we can write

N+∑

i=1

q
(+)
i c

+,∞
i =

N−∑

i=1

q
(−)
i c

−,∞
i

where two kind of ionic species are assumed to exist in the solution, positive
and negative with N+ and N− being the number of positive and negative ions,
respectively. Assuming that N+ = N− = NI , and since q

(+)
i = −q

(−)
i ≡ qi

and c
+,∞
i = c

−,∞
i = c∞i /2, we get from Eq. (5.97) that

∇ · (ε(r)∇φ(r))− λ(r)
ε0

NI∑

i=1

qic
∞
i sinh (βqiφ(r)) = −ρm(r)

ε0
(5.98)

which is a form often found in the literature and it represents a nonlinear par-
tial differential equation. In Eq. (5.98), sinh represents the function: sinh(x) =(
ex − e−x

)
/2.

Assuming that the potential is small, the linear form of the equation can be
obtained as

∇ · (ε(r)∇φ(r)) = −ρm(r)
ε0

+ ε

[
β

εε0

∑

i

q2
i c

∞
i

]
λ(r)φ(r) (5.99)
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We can determine the so-called Debye screening constant κ as

κ2 = β

εε0

∑

i

q2
i c

∞
i = β

εε0
I ≡ 1

l2D

(5.100)

which also describes the exponential decay of the potential in the solvent, with lD
being the Debye length, and I

I =
∑

i

q2
i c

∞
i

being the ionic strength. Note that κ = 0 in the macromolecule region because the
mobile ions are present only in the solvent region.

Equation (5.99) can then be written as

∇ · (ε(r)∇φ(r))− ε(r)κ2λ(r)φ(r) = −ρm(r)
ε0

(5.101)

Although for biological systems φ is not small, and therefore the linearisation
condition does not hold, comparisons between the linear and nonlinear forms of
the Poisson-Boltzmann equation (Fogolari et al. 1999) show that both forms are
in good agreement with each other. Moreover, these comparisons have shown that
small differences are related to the charge density, and hence to the electric field
magnitude, at the interface solvent-solute.

From solving either the linear Poisson-Boltzmann equation (see Eq. (5.101))
or the nonlinear Poisson-Boltzmann equation (see Eq. (5.97)), the electrostatic
potential, φ(r), will be obtained at any point r in space. It can be seen, that knowing
φ, we may calculate the local concentration of ions through the formula

ci(r) = c∞i exp (−βqiφ(r)) (5.102)

which involves the Boltzmann distribution. Moreover, the gradient of the electro-
static potential can give the electric field, E(r) = −∇φ(r).

Another quantity of interest calculated using the electrostatic potential is the
electrostatic component of the solvation free energy. The electrostatic term of
solvation free energy gives the work done for a possible process of charging the
macromolecule and ions in an ionic discharged atmosphere. Using these processes
in thermodynamic cycles, we can compute the electrostatic component of free
energies for real processes such as solvation. The free energy for charging the
solute (e.g., a macromolecule) in an ionic environment can be calculated using
different approaches, for example, by direct integration of the charge (Zhou 1994),
by considering a variation principle (Reiner and Radke 1990; Sharp and Honig
1990; Fogolari and Briggs 1997), or using thermodynamic arguments (Marcus
1955).
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Based on Marcus theory (Marcus 1955), the electrostatic energy Gsolv
elec contains

three different terms. The first term is the classical electrostatic energy, Gcl
elec

Gcl
elec =

1

2

∫
d3rρm(r)φ(r) (5.103)

The second term is arising from mixing the mobile species Gmob
elec :

Gmob
elec = kBT

∫
d3r

∑

i

ci(r) ln
ci(r)
c∞i

(5.104)

Combining Eqs. (5.102) and (5.104), we obtain

Gmob
elec = −

∫
d3r

(
∑

i

ci(r)qi

)
φ(r) (5.105)

The third term is the so-called osmotic term, which due to nonuniform ionic
concentration, and it is calculated as a volume integral:

Gsolvent
elec = kBT

∫
d3r

∑

i

(
c∞i − ci(r)

)
(5.106)

= kBT

∫
d3r

∑

i

ci(r)
[
exp (βqiφ(r))− 1

]

=
∫

d3r

(
∑

i

ci(r)qi

)
φ(r)

where the linearity of the exponential term is applied for φ small.
Therefore, the total electrostatic energy is

Gelec = Gcl
elec +Gmob

elec +Gsolvent
elec

or

Gelec = Gcl
elec =

1

2

∫
d3rρm(r)φ(r) (5.107)

where ρm is the charge density of fixed charges (i.e., nonionic charges such as partial
atomic charges of macromolecule). It is possible to also calculate the free energy by
knowing the electrostatic potential, for example, for the possible charging process
of a macromolecule in an ionic environment. That is done by combining different
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Fig. 5.8 Thermodynamic cycle for calculation of electrostatic solvation free energy. The dif-
ference in the charging energy, ΔGelec in reference surrounding phase and in solvent is the
electrostatic solvation free energy. Colors in bottom plots indicate the partial atom charges. In
the top plots, the blue colour indicates no partial charges on atoms

possible processes in a thermodynamic cycle that can lead to the computation of the
theoretical free energy of some real process, as discussed in Misra et al. (1994).

For instance, the thermodynamic cycle shown in Fig. 5.8 can be used to calculate
the electrostatic component of the solvation free energy. This thermodynamic
cycle indicates that the electrostatic component of the solvation free energy is the
difference in the free energies related to two purely hypothetical charging processes;
one in some reference surrounding environment phase (e.g., with dielectric constant
equal to that of the macromolecule) and the other the solvent surrounding environ-
ment with dielectric constant εw: Thus, using Eq. (5.107), we can write

ΔGsolv
elec = Gelec(solvent)−Gelec(ref ) (5.108)

= 1

2

∫
d3rρm(r) [φw(r)− φr(r)]
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Fig. 5.9 Different
computational regions of
interest: The solute
(macromolecule) region, Ωm,
with dielectric constant εm;
solvent region, Ωw , with
dielectric constant εw where
different mobile ions are
denoted; dielectric interface
(wireframes surface)

Often, φw(r)− φr(r) is called reaction potential, φreac(r), and thus Eq. (5.108) can
be written as

ΔGsolv
elec =

1

2

∫
d3rρm(r)φreac(r) (5.109)

In Eq. (5.109), ΔGsolv
elec represents the work done by electrostatic forces for

transferring a set of partial atomic charges of macromolecule from a fixed point
in some reference surrounding environment with dielectric constant εr to a fixed
point in solvent surrounding environment with dielectric constant εw.

Depending on the shape and charge distribution of macromolecule, numerical
solutions of the Poisson-Boltzmann equation could be difficult. Solvated macro-
molecular systems are in general modeled by regions with different dielectric
constants. Figure 5.9 illustrates a solvated macromolecule occupying the region Ω ,
where the macromolecule region is represented by Ωm as a solid surface; the solvent
region is represented by Ωw. The dielectric interface σ is defined by the molecular
surface and represents the region not penetrated by mobile ions, and n will represent
an unit vector normal to σ pointing from Ωm to Ωw. The transition from solute (with
low-dielectric constant) to solvent (with high-dielectric constant) is modelled to be
abrupt, giving rise to the dielectric interface σ . There are two conditions on σ that
are usually satisfied:

(φ(r))Ωm
= (φ(r))Ωw

(5.110)
(
ε
∂φ(r)
∂n

)

Ωm

=
(
ε
∂φ(r)
∂n

)

Ωw

These conditions are used in the methods based on boundary integral equations,
but may not apply to finite difference methods. Usually, the boundary of the
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entire computational domain is also defined, Γ . In addition, approximated Dirichlet
boundary condition is imposed in the boundary Γ .

The widely used numerical methods include finite difference method (FDM), the
boundary element method (BEM), and finite element method (FEM).

5.3.1.5 Generalized Born Model

The generalized Born (GB) model is another approach to describe the electrostatic
interactions in a multiple-dielectric environment in fewer computation efforts. To
obtain the electrostatic potential φ in such a model, we have to solve the following
Poisson equation:

∇ [ε(r)∇φ(r)] = − 1

ε0
ρ(r) (5.111)

where ρ is the charge distribution and ε is the dielectric constant, which is equal
to εm in the macromolecular interior, and it is equal to εw elsewhere. For a
macromolecule immersed in a reference environment (e.g., gas phase), the dielectric
constant of the exterior region is εr (e.g., for the gas phase εr = 1), and hence
ε = εr . Then, we can solve Eq. (5.111) under these two conditions:

∇ [ε(r)∇φw(r)] = − 1

ε0
ρ(r), (5.112)

ε(interior) = εm, ε(exterior) = εw

∇ [ε(r)∇φr(r)] = − 1

ε0
ρ(r),

ε(interior) = εm, ε(exterior) = εr (5.113)

with solutions, respectively, φw and φr . The difference between these two potentials
gives the reaction field

φreac = φw − φr (5.114)

The electrostatic contribution in solvation free energy is then given by

ΔGsolv
elec =

1

2

∫
d3rφreac(r)ρ(r) (5.115)

Approximating the macromolecule charge distribution by a set of partial atomic
point charges qi for i = 1, 2, · · · , M , then

ΔGsolv
elec =

1

2

M∑

i=1

qiφreac(ri ) (5.116)
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In the case of a single ion of radius a and charge q, the potentials can be found
analytically from Eq. (5.112), as

φw = q

4πε0εwa
(5.117)

φr = q

4πε0a

where εr = 1.
Then, the electrostatic part of solvation free energy is given by the well known

Born formula (Born 1920)

ΔGsolv
elec =

q2

8πε0a

(
1

εw
− 1

)
(5.118)

If then the macromolecule would have been considered as a set of charges
q1, · · · , qM embedded in spheres of radii a1, · · · , aM , and assuming that the
separation between any of these two spheres i and j is rij is sufficiently large in
comparison to their radii, the solvation free energy can be written as

ΔGsolv
elec =

1

2

M∑

i=1

q2
i

4πε0ai

(
1

εw
− 1

)
+ 1

2

M∑

i �=j

qj qj

4πε0rij

(
1

εw
− 1

)
(5.119)

where the first term is the sum of individual Born terms and the second term is the
sum of the pair-wise Coulomb interactions.

In the GB theory, we attempt to find the same relatively simple analytical formula
as in Eq. (5.119) by solving the Poisson equation directly. First, we will assume no
salt effects in the description, then the Poisson equation is linear, which provides a
ΔGsolv

elec quadratic in the charges. Besides, as we will see, the effect of the dielectric
constants of solvent and macromolecule is different.

From classical electrostatics, assuming a linearly polarized medium (i.e.,
isotropic medium), the work needed to assemble a charge distribution can also
be formulated in terms of the scalar product of the electric field E and electric
displacement D:

D = ε0εE

where ε is the dielectric constant. The work is

W = 1

2

∫
E · Dd3r = 1

2

∫ (
D
ε0ε

)
· Dd3r (5.120)
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Fig. 5.10 The electrostatic
field of a point charge at the
origin

Let us consider the charge qi which is assumed to be placed at the origin of some
coordinative systems (as shown in Fig. 5.10) representing the partial charge of atom
i. Using the Maxwell equation, we can write

∇ · D = ρ

Integration according to the volume and using the Gaussian theorem, we get

∫
∇ · D d3r =

∫
ρ d3r = qi

or
∫

D · dS = qi

since the electric displacement vector D has a radial symmetry, then we can write

∫
D(r)dS = qi

where dS = d(4πr2) = 8πrdr , then we obtain the solution as

D(r) = qi

4πr2

As the vector, it can be written as

D = qir
4πr3

The electric field vector is

E = qir
4πε0εr3
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The work was done to place a charge qi at the origin within some macromolecule
whose interior part has a dielectric constant εm, surrounded by a reference medium
with dielectric constant εr with no other charges placed yet, is

Wi = 1

2

∫
d3r

D
ε0ε

· D (5.121)

= 1

8πε0

∫

interior

d3r
qir
εmr3 · qir

r3

+ 1

8πε0

∫

exterior

d3r
qir
εrr3 · qir

r3

= q2
i

8πε0

[∫

interior

d3r
1

εmr4 +
∫

exterior

d3r
1

εrr4

]

If the reference medium has the same dielectric constant as the macromolecule,
εr = εm, then

Wi(ref ) = q2
i

8πε0

[∫

interior

d3r
1

εmr4 +
∫

exterior

d3r
1

εmr4

]
(5.122)

If the reference medium is the solvent, εr = εw, then

Wi(wat) = q2
i

8πε0

[∫

interior

d3r
1

εmr4 +
∫

exterior

d3r
1

εwr4

]
(5.123)

Then, the electrostatic contribution to solvation free energy, which is the work done
for moving a partial charge of a macromolecule placed at some fixed point origin
in a reference medium to another fixed point in the macromolecule in a solvent
medium, is

ΔGsolv
elec = Wi(wat)−Wi(ref ) = q2

i

8πε0

∫

exterior

[
1

εw
− 1

εm

]
d3r
r4

(5.124)

or in the form

ΔGsolv
elec =

1

2

q2
i

Riε0

[
1

εw
− 1

εm

]
(5.125)

where Ri is the effective Born radius,

1

Ri

= 1

4π

∫

exterior

d3r
r4

(5.126)
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Fig. 5.11 The illustration of
the Born sphere with radius
ai , interior and exterior part
of the macromolecule

In general, the effective Born radius is an integral over the interior region of the
macromolecule, excluding a radius ai around the point of charge qi , as illustrated in
Fig. 5.11,

1

Ri

= 1

4π

∫

exterior

d3r
r4 (5.127)

= 1

4π

∫

all space

d3r
r4

−
[

1

4π

∫

interior(r>ai)

d3r
r4 + 1

4π

∫

r≤ai

d3r
r4

]

= 1

ai
− 1

4π

∫

interior(r>ai)

d3r
r4

where the integration over all space gives zero because limr→∞ 1/r4 = 0. The
second term in Eq. (5.127) is the so-called excluded volume integral. It can be seen
that if the molecular boundary is simply the sphere of radius ai , then Ri = ai .

For a macromolecular system of M partial atomic charges, the electrostatic term
of the solvation free energy for bringing the system of charges for a fixed point in
surrounding medium with dielectric constant εr = εm to a fixed point in surrounding
medium being the solvent with dielectric constant εw is

ΔGsolv
elec =

1

2

M∑

i=1

M∑

j=1

qiqj

4πε0fGB(rij )

[
1

εw
− 1

εm

]
(5.128)

where fGB(rij ) is a function, which if i = j becomes the effective Born radius Ri

and if i �= j (i.e., in pair-wise terms) becomes the effective interaction distance. The
form chosen for this functions is (Still et al. 1990):
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fGB(rij ) =
(
r2
ij + RiRj exp

(
− r2

ij

4RiRj

))1/2

(5.129)

The electrostatic term of the potential of mean force is then given as

Welec = Helec
mm +ΔGsolv

elec

where Helec
mm is the intra-macromolecular electrostatic interaction energy

Helec
mm = 1

2

M∑

i=1

M∑

j=1 �=i

qiqj

4πε0εmrij

Thus, we obtain

Welec = 1

2

M∑

i=1

M∑

j=1 �=i

qiqj

4πε0εmrij
(5.130)

+ 1

2

M∑

i=1

M∑

j=1

qiqj

4πε0fGB(rij )

[
1

εw
− 1

εm

]

It can be seen that both dielectric constants, of the solvent and macromolecule,
appear in the formula (see Eq. (5.130)), where εm of macromolecule appears in the
second term of Eq. (5.130) since εm is considered as the dielectric constant of the
reference environment system.

The GB model can be extended to consider low salt concentrations at the
Debye-Hückel approximation level as discussed in Srinivasan et al. (1999). In this
approximation Eq. (5.128) is written as (Tjong and Zhou 2007b)

ΔGsolv
elec =

1

2

M∑

i=1

M∑

j=1

qiqj

4πε0fGB(rij )

[
exp

(−ακfGB(rij )
)

εw
− 1

εm

]
(5.131)

where κ is the Debye-Hückel screening parameter, given

κ =
(

I

εwε0kBT

)1/2

(5.132)

where I is the ionic strength. In Eq. (5.132), α depends on the ionic strength
according to (Tjong and Zhou 2007b)

α = 1 + 0.0169
√
I

1 + 0.075
√
I

(5.133)
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The GB methods discussed in the literature do not have any other dependence on the
macromolecule and solvent dielectric constants beyond the scaling factor shown in
Eq. (5.128). In fact, the linear Poisson-Boltzmann solvation energy method has more
complicated dependencies on εm and εw. In Tjong and Zhou (2007b), it has been
found that these dependencies can be modeled accurately by multiplying ΔGsolv

elec in
Eq. (5.131) by a scaling factor S(εm, εw):

S(εm, εw) = A+ 2Bεm/εw

1 + 2εm/εw
(5.134)

with

A = −1.63 × 10−3 | Q |0.65 +2.18 × 10−6M + 1.016

B = 3.31 × 10−2 | Q |0.65 −4.77 × 10−5M + 0.683

where Q denotes the net charge of the macromolecule. Then, Eq. (5.131) is modified
as the following

ΔGsolv
elec = S(εm, εw)

1

2

M∑

i=1

M∑

j=1

qiqj

4πε0fGB(rij )
(5.135)

×
[

exp
(−ακfGB(rij )

)

εw
− 1

εm

]

Thus, we can rewrite Eq. (5.130) as

Welec = 1

2

M∑

i=1

M∑

j=1 �=i

qiqj

4πε0εmrij
(5.136)

+ S(εm, εw)
1

2

M∑

i=1

M∑

j=1

qiqj

4πε0fGB(rij )

×
[

exp
(−ακfGB(rij )

)

εw
− 1

εm

]

The effective Born radii in GB models can be determined using the continuum
dielectric models and Coulomb field approximation. Other approximations are
also introduced to reduce the computation efforts, such as those that attempt to
adjust these parameters using the fitting to the experimental data or the numerical
continuum dielectric data. For relatively small molecules, the extension of the
standard GB models was introduced by carrying out integrals over the macro-
molecule dielectric regions numerically (Luo et al. 1997; Majeux et al. 1999). In
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particular, we can mention the SMx models of Cramer and Truhlar (1999). In SMx
models, the electrostatic contribution of GB models combines with the surface-area
dependent solvation term and various quantum mechanical treatments of the solute
charge distribution. These models, although accurate, have generally not used for
macromolecules, since they are not fast enough.

Instead, the pair-wise methods have shown to be fast in applications to macro-
molecules. In this approach, the integral in Eq. (5.127) is approximated as a
summation over the contributions of each atom. Thus, based on this model, if the
molecule is consisting of a set of spheres with non-vanishing radius ai . Consider
two spheres, i and j , respectively, where sphere i is assumed to be placed at the
origin and sphere j at position rij with respect to i, then Eq. (5.127) can be written
as summation of integrals over spherical volumes:

1

Ri

= 1

ai
− 1

4π

M∑

j=1

∫ ∞

ai

1

r4
d3r (5.137)

The analytical solution of the integral in Eq. (5.137) is given in (Schaefer and
Froemmel 1990):

∫ ∞

ai

d3r
r4

= (5.138)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aj

2(r2
ij − a2

j )
+ 1

4rij
log

rij − aj

rij + aj
,

(
rij ≥ ai + aj

)

2 − θ

4ai
− 1

4(rij + aj )
+ 1

4rij
log

ai

rij + aj
,

(| ai − aj |≤ rij ≤ ai + aj
)

aj

2(r2
ij − a2

j )
+ 1

ai
+ 1

4rij
log

aj − rij

aj + rij
,

(
rij ≤| ai − aj | ∧ai ≤ aj

)

1

ai
− 1

aj
,

(
rij = 0 ∧ ai ≤ aj

)

0,(
rij ≤| ai − aj | ∧ai ≥ aj

)

where

θ = r2
ij + a2

i − a2
j

2rij ai
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Other approached have also been introduced to compensate for overlapping of
spheres. For example, Hawkins et al. (1995, 1996) have proposed the following
expression:

1

Ri

= 1

ai
− 1

4π

M∑

j=1

∫ ∞

ai

dr
1

r2
Hij (rij , Sij , aj ) (5.139)

where Hij (rij , Sij , aj ) represents the fraction of the area of a sphere of radius r

centred at atom i that is shielded by a sphere of scaled radius Sij aj at a distance
rij . By using the scaled radius Sij aj instead of aj in Eq. (5.139), the overlapping
of van der Waals spheres is calculated. The scaling factors are estimated by a
fitting procedure to the experimental data of the free energies of solvation, with
values initially restricted in the range between 0.5 and 1.0. Hij (rij , Sij , aj ) can be
calculated analytically (Hawkins et al. 1995):

1

4π

M∑

j=1

∫ ∞

ai

dr
1

r2 Hij (rij , Sij , aj ) = 1

2

M∑

j=1

[
1

Lij

− 1

Uij

(5.140)

+ rij

4

(
1

U2
ij

− 1

L2
ij

)
+ 1

2rij
ln

Lij

Uij

+ S2
ij a

2
j

4rij

(
1

L2
ij

− 1

U2
ij

)]

where

Lij =
⎧
⎨

⎩

1 rij + Sij aj ≤ ai

ai rij − Sij aj ≤ ai < rij + Sij aj

rij − Sij aj ai ≤ rij − Sij aj

(5.141)

and

Uij =
{

1 rij + Sij aj ≤ ai

rij + Sij aj ai < rij + Sij aj
(5.142)

The fitting parameters are considered the set of {ai, Sij }, which are optimised by a
minimisation procedure which minimises the sums of the squares of the errors:

U = 1

r + I

[
r∑

i=1

| ΔGsolv(expi)−ΔGsolv(calci) |

+ 1

6

I∑

i=1

| ΔGsolv(expi)−ΔGsolv(calci) |
]
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Fig. 5.12 The illustration of
the contribution from the
atom j to the integral Zij

where r is the total number of neutral molecules and I is the total number of ionic
compounds in the training set. ΔGsolv(exp) is the experimental free energy of
solvation and ΔGsolv(calc) is the calculated free energy of solvation for the given
set of parameters.

These approximations are known as the generalized Born model with the
Coulomb-field approximation. Recently, Tjong and Zhou (2007a,b) introduced a
parametrization-free and accurate method for calculation of the effective Born
radius in GB model based on a previously proposed approach (Grycuk 2003). In
this approximation, known as generalized Born model with the Grycuk-Kirkwood
approximation, the integral of Eq. (5.127) is replaced by

1

R3
i

= 1

a3
i

− 3

4π

∫

interior(r>ai)

d3r
r6 (5.143)

To a zeroth order approximation, the volume integral of Eq. (5.143) can be written
as a sum of contributions from individual atoms. As such, the contribution from the
j (j �= i) atom is the integral over the region of its Born sphere laying outside atom
i:

Zji = 3

4π

∫

V0

d3r
r6

(5.144)

where V0 is the volume illustrated in Fig. 5.12.
We can distinguish four different cases:

1. The atoms i and j do not intersect, i.e., rij > ai + aj . In this case,

Zji =
a3
j

(
r2
ij − a2

j

)3 (5.145)
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2. The atoms i and j intersect, but neither is completely laying inside the other, i.e.,
| ai − aj |≤ rij < ai + aj . The integral is

Zji = 1

16rij

[
−6

(
1

a2
i

− 1
(
rij + aj

)2

)
(5.146)

+ 8rij

(
1

a3
i

− 1
(
rij + aj

)3

)

− 3
(
r2
ij − a2

j

)(
1

a4
i

− 1
(
rij + aj

)4

)]

3. The atom i is completely inside atom j , i.e., rij ≤| ai − aj | and ai ≤ aj . In this
case

Zji = 1

a3
i

− a3
j

(
a2
j − r2

ij

)3 (5.147)

4. The atom j is completely inside atom i, i.e. rij ≤| ai − aj | and ai ≥ aj . In this
case the atom j does not contribute, thus

Zji = 0 (5.148)

Then, the effective Born radius is calculated as

1

Ri

=
⎛

⎝ 1

a3
i

−
M∑

j=1 �=i

Zji

⎞

⎠
1/3

(5.149)

Comparison of the approximation given by Eq. (5.149) with Coulomb-field
approximation (Eq. (5.138)) shows that the latter results involve a logarithmic
function, which makes the calculations computationally more expensive, about 10%
additional CPU time as reported elsewhere (Tjong and Zhou 2007b).

Following the above discussion, Zji overestimates the contribution of atom j if
its region outside the atom i intersects with another atom k. In such case, one can use
the scaling Born radius strategy (Sjiaj ), which is originally provided as a solution
to the problem (Hawkins et al. 1995; Gallicchio and Levy 2004). The volume
of overlapping spheres according to the Poincaré exclusion principle is (Petitjean
1994)

V =
M∑

j=1

Vj −
M∑

j=1

M∑

k>j

Vjk +
M∑

j=1

M∑

k>j

M∑

l>k>j

Vjkl − · · · (5.150)
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where Vj is the volume of atom j , Vjk is the intersection volume of atoms j and k,
Vjkl is the intersection volume of atoms j , k, and l, and so on. The self-volume Vjj

is found as

Vjj = Vj − 1

2

M∑

k=1

Vjk + 1

3

M∑

k=1

M∑

l=1

Vjkl − · · · (5.151)

The scaling factor is then calculated as

Sji =
Vjj + 1

2
Vji

Vj

(5.152)

If no other atoms intersect with atom j , then Sji = 1. The intersection volumes can
also be well approximated using the Gaussian integrals as in Gallicchio and Levy
(2004), which works well if the intersecting atoms are heavy atoms, because the
hydrogen atoms are buried inside the heavy atoms in molecules and the Gaussian
approximation may give large errors. Then, the effective Born radius given by
Eq. (5.149) can be modified as the following:

1

Ri

=
⎛

⎝ 1

a3
i

−
M∑

j=1 �=i

SjiZji

⎞

⎠
1/3

(5.153)



Chapter 6
Molecular Dynamics Methods in
Simulations of Macromolecules

Molecular dynamics simulations at atomic level have widely been used in studying
macromolecular systems, such as protein, DNA and their complexes, mainly
because the laws of classical statistical mechanics can largely govern the processes
involved at the experimental conditions. Macromolecules, such as proteins, are
characterized by dynamics with time scales ranging from nanoseconds to millisec-
onds. In this chapter, we discuss the molecular dynamics method as one of the
most common computer simulation approach used to study molecular systems. In
particular, we will present the equations of motion in the most relevant statistical
ensembles used in the molecular dynamics simulations of molecular systems.

6.1 Introduction

Molecular dynamics (MD) method is playing a major role in studying macromolec-
ular systems (Karplus and McCammon 2002) in part because the laws of classical
statistical mechanics can mainly govern the processes involved at the experimental
conditions (van Gunsteren et al. 2006). MD is a computer simulation approach
used to numerically integrate the equations of motion of atoms and molecules
by approximations of known physics (Allen and Tildesley 1989; Hoover 1991;
Frenkel and Smit 2001). Ciccotti and Vanden-Eijnden (2015) argue that MD is an
engine that is used to sample both time-independent and time-dependent statistical
mechanical properties of molecular systems. In general, molecular systems may
consist of a large number of particles. Thus it is impossible to find the properties
of such complex systems analytically (Abraham 1986). When the number of
bodies is more than two no analytical solutions can be seen and result in chaotic
motion (Posch et al. 1986). MD simulation circumvents this problem by using
numerical methods (Allen and Tildesley 1989; Hoover 1991). The first large-scale
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atomistic molecular dynamics simulations include the work of Abraham and co-
workers (Abraham et al. 1984).

MD represents an interface between the experiment and theory and can be
understood as a virtual experiment (Allen and Tildesley 1989; Frenkel and Smit
2001). MD probes the relationship between molecular structure, movement, and
function (Karplus and McCammon 2002; Karplus and Kuriyan 2005). Molecular
dynamics is a multidisciplinary method, and its laws and theories originate from
different fields, such as mathematics, physics, and chemistry. Also, it implements
algorithms from computer science and information theory (van Gunsteren et al.
2006). It was initially conceived within theoretical physics (Alder and Wainwright
1959), but today applies to other fields too, such as the computer simulations of the
materials science and biomolecular systems. In the beginning, before the computers
were used to perform molecular dynamics simulations, simple, but that required a
lot of hard work, physical models were used, such as macroscopic spheres to prove
the concepts (Bernal 1964; Hoover and Ree 1968; Alder et al. 1968).

Molecular dynamics as a discipline includes molecular modeling and computer
simulations based on statistical mechanics laws. The main justification of MD
method, as a specialized discipline of molecular modeling and computer simulation
based on statistical mechanics, is that statistical ensemble averages are equal to time
averages of the system, known as the ergodic hypothesis (Allen and Tildesley 1989;
Leach 2001):

〈A〉 = lim
T→∞

T∫

0

dtA(t) (6.1)

where 〈· · · 〉 is an ensemble average and A can be any physical property of the
system.

MD has also been termed statistical mechanics by numbers and Laplace’s
vision of Newtonian mechanics of predicting the future by animating nature’s
forces (Bernal 1964; Schlick 1996) and allowing insight into molecular motion on
an atomic scale. However, long MD simulations are mathematically limited, due
to cumulative errors in the numerical integration of equations of motion. However,
these numerical errors can be minimized using more sophisticated algorithms and
parameter selections (Martyna et al. 1994; Minary et al. 2004), but not elimi-
nated (Piana et al. 2014). Furthermore, current potential functions may not, in all
cases, be sufficiently accurate to reproduce the dynamics of molecular systems, so
the much more computationally demanding Ab-Initio Molecular Dynamics method
must be used combined with recent advances in parallel supercomputing (Hardy
et al. 2011; Stone et al. 2011, 2013; Scarpazza et al. 2013; Phillips et al. 2014). Nev-
ertheless, molecular dynamics method is successfully used to provide a detailed time
and space resolution into representative behavior in phase space when combined
with appropriate algorithms for optimizing the conformation search (Andricioaei
and Straub 1996b).



6.2 Equations of Motion 191

MD approach has been used for a very long time to study macromolecular
systems. These studies include many applications, such as the internal atomic
motion (Amadei et al. 1993; Karplus and McCammon 2002), protein folding (Rogal
and Bolhuis 2008), transition path sampling (Bolhuis et al. 2002), free energy
calculations (Seyler and Beckstein 2014) and protein structure prediction (Perez
et al. 2016). In all these studies, an observed limitation of standard MD method
is the time and size scales covered in the simulations. For instance, in studying
slow conformation motions of macromolecular systems (Palmer 1982; Clarage et al.
1995). To date there exist MD simulations that are far longer than standard MD
simulation timescales, for instance, in Arkhipov et al. (2008) there are reported up
to ten-microsecond MD simulation of a fast folding protein that was made possible
through an improved scaling and parallel performance of the MD engine, or even
longer, up to milliseconds time scale by computer engineering (Friedrichs et al.
2009; Dror et al. 2011). Long MD simulations are also possible using multiple time
step integrator algorithms (Tuckerman et al. 1992; Tuckerman and Martyna 2000;
Minary et al. 2004). Different advanced methods have been introduced to enhance
conformation sampling of MD simulations (see the review Kamberaj 2019).

6.2 Equations of Motion

In this section, we discuss the equations of motion used in molecular dynamics
simulations of different statistical ensembles.

6.2.1 Microcanonical Ensemble

The simplest form of equations of motion used in molecular dynamics corresponds
to the microcanonical ensemble (namely NVE ensemble), in which the system is
isolated and does not allow changes in number of particles (N ), volume (V ) and
energy (E) (Allen and Tildesley 1989; Frenkel and Smit 2001). It corresponds
to an adiabatic process with no heat exchange. During generation of a molecular
dynamics trajectory in microcanonical ensemble, the energy is exchanged between
potential and kinetic energy, but the total energy is constant. For an N particles
system with coordinates r = {r1, · · · , rN } and momenta p = {p1, · · · ,pN }, the first
order differential equations for each atom i with mass mi are in Newton’s notation
as follows (Goldstein 2002):

ṗi = −∇U(r),

ṙi = pi/mi, i = 1, · · · , N (6.2)
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The potential energy function U(r) of the system is a function of the particle
coordinates r. In Physics, it is simply called the potential and in Chemistry as the
force field (Leach 2001). The first equation comes from Newton’s second law, where
the force Fi acting on each particle i in the system is the negative gradient of the
potential.

In a MD simulation run, every time step the positions and momenta of particles
may be determined numerically using a numerical integration algorithm, such as
Verlet or Leap-frog (Allen and Tildesley 1989). The time evolution of r and p
defines a trajectory in the phase space. Given the initial positions (e.g. from theoret-
ical knowledge) and momenta (e.g. according to Maxwell-Boltzmann distribution),
the positions and velocities of the particles advance in time using Eq. (6.2).

It is interesting to explain the meaning of temperature in molecular dynamics
simulations. From the macroscopic point of view, the temperature involves a huge
number of particles. From the statistical point of view, the temperature is a statistical
quantity, and as such only if there is a large enough number of atoms, statistical
temperature can be estimated from the instantaneous temperature T , which is found
by equating the kinetic energy, Ek , of the system to gkBT /2 where g denotes the
number of degrees of freedom of the system (Allen and Tildesley 1989):

T = 〈T 〉,
T = 2Ek/gkB (6.3)

If the number of atoms used in MD simulations is small, then the instantaneous tem-
perature may show high fluctuations and may not converge to the thermodynamic
temperature, known as the temperature-related phenomenon (Allen and Tildesley
1989). Something similar happens in biophysical simulations. The temperature of
the system in NVE increases naturally when macromolecules, such as proteins,
undergo exothermic conformation changes and binding.

6.2.2 Canonical Ensemble

The canonical (NVT) ensemble corresponds to the ensemble with the number of the
atoms (N ), volume (V ) and temperature (T ) constant. Often, it is called constant
temperature molecular dynamics. In NVT, the energy of the system exchanges with
the external bath also called as the thermostat.

There exist different thermostat methods introduced to absorb or dissipate energy
at the boundaries of an MD system with a surrounding thermostat using the laws of
physics, approximating in this way the canonical ensemble. In the MD simulations
of macromolecular systems, the most popular methods to control temperature are
the Nosé-Hoover thermostat, the Berendsen thermostat, and Langevin dynamics.
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In the following, we will introduce all the methods that can be used to control the
temperature in a molecular dynamics simulation.

6.2.2.1 Isokinetic Dynamics Method

The isokinetic dynamics method is the earliest technique used in the molecular
dynamics simulations to re-scale the velocities sufficiently frequently for controlling
the temperature of the system. In this approach, after each time step, Δt , of solving
the microcanonical equations of motion (as given by Eqs. (6.2)), the particles
momenta p(t) are updated to p(t + Δt), then each of the particle momentum is
multiplied by a re-scaling factor giving in this way a new momentum p′(t + Δt)

with the same kinetic energy as the previous time step (t):

p′i (t +Δt) =
√

T0

T pi (t +Δt), i = 1, · · · , N (6.4)

where T0 is the target temperature of the system and T is the instantaneous
temperature calculated according to Eq. (6.3). The isokinetic dynamics method
represents the simplest deterministic and time-reversible thermostat for sufficiently
small integration time step Δt used in the molecular dynamics method.

6.2.2.2 Berendsen Thermostat

Another approach for controlling the temperature is the Berendsen thermostat,
which represents a weak coupling of the system to an external heat bath at a fixed
temperature T0 (Berendsen et al. 1984). To control the temperature of system, each
particle velocity is scaled at every timestep such that the rate change of temperature
is proportional to the difference in temperature given as:

dT (t)

dt
= 1

τ
(T0 − T (t)) (6.5)

Here, τ represents a coupling parameter, which determines how strongly the bath
and the system are coupled to each other. This method yields an exponential decay
of the system’s temperature towards the desired temperature with a change in the
temperature at every time step given as:

ΔT = Δt

τ
(T0 − T (t)) (6.6)

The scaling factor of the velocities is (Berendsen et al. 1984)

λ =
[

1 + Δt

τ

(
T0

T (t −Δt/2)
− 1

)]1/2

(6.7)
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The T (t − Δt/2) indicates the use of the so-called leap-frog algorithm for the
numerical integration. Alternatively, if the velocity-Verlet algorithm is used, then
the scaling factor is given as:

λ =
[

1 + Δt

τ

(
T0

T (t +Δt)
− 1

)]1/2

(6.8)

The velocities are scaled using the following scheme:

v′i (t +Δt) = λvi (t +Δt), i = 1, · · · , N (6.9)

In typical MD simulation, τ is an input parameter used to adjust the strength
of the coupling of the system with the external heat bath. Its value has to be
appropriately chosen such that when τ → ∞ the Berendsen thermostat becomes
inactive and the molecular dynamics simulation is sampling a microcanonical
ensemble. In this limit, the temperature fluctuations will grow until they reach the
typical value of a microcanonical ensemble. However, the temperature will never
reach the characteristic values of the canonical ensemble. In contrast, too small
values of τ will generate nonphysically low-temperature fluctuations. Besides, when
τ is chosen to be equal to the integration timestep Δt , the Berendsen thermostat
behaves similarly to the velocity scaling approach discussed above for the isokinetic
dynamics method. The suggested value of τ is τ ≈ 0.1 ps for MD simulations
of condensed-phase systems and the most macromolecular simulations (Berendsen
et al. 1984).

It is important to note that the ensemble sampled by the MD simulation using
either an isokinetic dynamics method or a Berendsen thermostat approach is not
corresponding to a canonical ensemble.

Example 1 Consider a harmonic oscillator with potential energy function

U(x) = k

2
(x − x0)

2

where k = 317 kcal/mol/Å
2

and x0 = 1.523 Å, which is a typical force constant
and bond length for Csp3-Csp3 bond of the MM2 force field (Leach 2001). MD
simulations are performed using Berendsen thermostat with integration time step
Δt = 1 fs. The velocity-Verlet algorithm integrate numerically the equations of
motion and the input parameter τ = 0.01 ps. The initial velocity of the particle
was generated randomly using a Maxwell-Boltzmann distribution at the target
temperature T0 = 300 K. While the initial position was randomly chosen.

In Fig. 6.1a we show the scatter plot of the velocity versus displacement
of the harmonic oscillator. Besides, Fig. 6.1b shows the running average of the
temperature. The results show that the sampling is not a canonical ensemble, but
the velocity scaling factor can control the temperature fluctuations to the desired
value of the temperature, which is T0 = 300 K, in this case.
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Fig. 6.1 (a) The
position-velocity scatter plot
and (b) the running average
temperature of an harmonic
oscillator using MD
simulations with Berendsen
thermostat: τ = 0.01 ps,
Δt = 1 fs and
k = 317 kcal/mol/Å

2
and

x0 = 1.523 Å

The Berendsen thermostat is often used to relax a system to the target temper-
ature. When the system’s temperature converges to the equilibrium temperature,
it is essential from the statistical mechanics’ point of view to sampling a correct
canonical ensemble.

6.2.2.3 Nosé-Hoover Thermostat

Nosé (1984c) originally introduced the extended dynamical systems method, and
then unified by Hoover (1985b).

The extended dynamical systems, as shown below analytically, can sample the
canonical ensemble. According to this approach, a heat bath is considered as an
integral part of the system by extending the real variables of the system with the
so-called thermostat variable s, associated with a new thermostat mass variable,
namely Q > 0, and its conjugated momentum π . The magnitude of Q controls the
temperature fluctuations, representing, thus, the coupling between the reservoir and
the real system. The thermostat variable s is a time-scaling parameter, that is, the
timescales in the extended system of variables are stretched by the factor s according
to

dt = dτ

s
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Here, we will again consider a system of N particles as in the case of the
microcanonical ensemble with the Hamiltonian function H(r,p). The extended
dynamical system consists of one additional degree of freedom with an extended
Hamiltonian, namely Nosé Hamiltonian, to control the temperature in an MD
simulation given as in (Nosé 1984c):

HN =
gN∑

i=1

[
(p′

i )
2

2s2
i mi

+ π2
i

2Qi

+ kBT ln(si)

]
+ U(r1, · · · , rN) (6.10)

Here, gN is the number of degrees of freedom of the real system, and T is the
target temperature. Note that p′ is the canonical momentum associated with the
position variable, r = (

q1, · · · , qgN
)
. The (′) is used to distinguish it from the real

momentum given by p = p′/s. Besides, we have coupled each degree of freedom
to a thermostat using in this way a massive number of thermostats approach.

Nosé has shown (Nosé 1984c) that this system generates configurations from a
canonical ensemble, under the assumption that the dynamics are ergodic. Besides,
Hoover has shown (Hoover 1985b) that the intrinsic time variable must be re-scaled
to provide trajectories at fixed spaced points in the real-time variable. It is worth
noting that using the configurations separated in time by not fixed intervals may
not be an issue for performing ensembles averages. However, it does significantly
affect the predictions of the correlation functions. This difficulty is overcome using a
real-variable formulation of the equations, the so-called Nosé-Hoover (Nosé 1984c;
Hoover 1985b).

Applying Hamilton’s equations of motion:

ṗ = −∂HN

∂q
, (6.11)

q̇ = ∂HN

∂p

In Eq. (6.11), q and p represent the generalized coordinate and its conjugate
momentum, respectively. Then, we obtain:

dqi

dτi
= p′

i

s2
i mi

,

dp′
i

dτi
= −∇qiU(q1, · · · , qgN ),

dsi

dτi
= πi

Qi

,

dπi

dτi
= (p′

i )
2

s3
i mi

− kBT

si
(6.12)
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In Eq. (6.12), the derivatives are with respect to the scaled time τi .
These equations represent the dynamics of a system that sample a microcanonical

ensemble in the extended system variables, namely (r,p′, s, π, t ′). However, note
that the total energy of the real system is not conserved. That is because of the
fluctuations of s, the heat transfers between the system and the heat bath to adjust
the temperature of a system.

The equations of motion sample a canonical ensemble in the real system
variables, namely r and p′/s. To show that, we can consider the partition function
which, for energy E and Planck’s constant h, is defined as,

Z = 1

N !hgN
∫

dπ

∫
ds

∫
dr

∫
dp′× (6.13)

× δ

(
HNVE(r,p′/s)+ π2

2Q
+ (gN + 1)kBT ln s − E

)

Using the equivalence relation for δ, δ (f (s)) = δ (s − s0) /f
′(s), where s0 is the

solution of the equation: f (s) = 0, and substituting dp′ = sgN dp, we get

Z = 1

N !hgN
∫

dπ

∫
ds

∫
dr

∫
dp

sgN+1

(gN + 1)kBT
× (6.14)

× δ

⎛

⎜⎜⎜⎝s − exp

⎛

⎜⎜⎜⎝

−
[
HNVE(r,p′)+ π2

2Q
− E

]

(gN + 1)kBT

⎞

⎟⎟⎟⎠

⎞

⎟⎟⎟⎠

= 1

(gN + 1)kBT N !hgN
∫

dπ

∫
dr

∫
dp′×

× exp

⎛

⎜⎜⎜⎝

−
[
HNVE(r,p′)+ π2

2Q
− E

]

kBT

⎞

⎟⎟⎟⎠

After integration according to π variable, we get:

Z =
√

2πQ

kBT

1

(gN + 1)

1

N !hgN
∫

dr
∫

dp′× (6.15)

× exp

(
− [

HNVE(r,p′)− E
]

kBT

)

= 1

gN + 1

√
2πQ

kBT
exp

(
E

kBT

)
Zc
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where

Zc = 1

N !hgN
∫

dr
∫

dp′ exp

(−HNVE(r,p′)
kBT

)

indicating that constant energy dynamics of the extended Hamiltonian HN(r, s,p, π)
correspond to constant temperature dynamics of H(r,p′).

The Nosé equations of motion are continuous, deterministic and time-reversible.
However, because a second-order equation describes the time-evolution of the
variable s, heat may be absorbed and dissipated by the system periodically yielding
nearly periodic temperature fluctuations. The stretched timescale of the Nosé
equations causes a sampling of the trajectory at irregular time intervals, which may
be impractical for the investigation of the dynamical properties of a system, such
as the time correlation functions. Nosé and Hoover showed that the above Nosé
equations of motion express in terms of real system variables as follows:

pi = p′
i

si
, π̂i = πi

si
(6.16)

This was followed by a Sundman time-transformation (Zare and Szebehely 1975)
applied to the vector field,

dτi

dt
= si . (6.17)

Using this transformation, a new system of non-Hamiltonian dynamical equations
for the real variables is obtained as follows:

dsi

dt
= s2

i

π̂i

Qi

, (6.18)

dπ̂i

dt
= 1

si

(
p2
i

mi

− kBT

)
− si π̂

2
i

Qi

,

dqi

dt
= pi

mi

,

dpi

dt
= −∇qiU(q1, · · · , qgN )−

si π̂i

Qi

pi

The idea was developed further by Hoover (1985b) who proposed another change
of variables form:

si π̂i ≡ πη , ln si ≡ ηi

for i = 1, · · · , gN .
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According to Hoover (1985b), the Hamiltonian equations of motion can be
written as

q̇i = pi

mi

, (6.19)

ṗi = Fi − πηi

Qi

pi ,

η̇i = πηi

Qi

,

π̇ηi =
p2
i

mi

− kBT

for i = 1, · · · , gN .
Note that the choice of the fictitious mass Q influences the dynamics and the con-

servation of the extended system energy Eext . In particular, too large values of Q,
representing a weak coupling, may cause a poor temperature control (Nose-Hoover
thermostat with Q → ∞ is MD which generates a microcanonical ensemble), and
the canonical distribution may only be obtained after very long simulation times.
Any finite mass is sufficient to guarantee in principle the generation of a canonical
ensemble.

On the other hand, too small values, corresponding to tight coupling, may cause
the high-frequency temperature oscillations. The variable s may oscillate at a very
high frequency, and they may be decoupled with the characteristic frequencies of
the real system, yielding a decoupling of the thermostat degrees of freedom from
the physical degrees of freedom, characterized by a slow exchange of kinetic energy.
Typically, the thermostat mass is as follows:

Q = kBT

f 2
(6.20)

where f is the frequency of the heat exchange between the system and the heat bath.
The conserved energy is

ENH =
gN∑

i=1

[
p2
i

2mi

+ π2
ηi

2Qi

+ kBT ηi

]
+ U

(
q1, · · · , qgN

)
(6.21)

Example 2 For the case study of the Example 1, we show in Fig. 6.2a the total
energy ENH , the thermostat energy and the sum of kinetic and potential energy
for the harmonic oscillator as a function of the MD time step. Our results indicate
perfect conservation of the total energy of the system as depicted in the inset graph.
The velocity-Verlet algorithm integrates numerically the equations of motion with
a time step Δt = 1 fs, and the Nosé thermostat mass is determined according to
Eq. (6.20) with f = 100 ps−1. The target temperature was 300 K.
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Fig. 6.2 The total energy of the system (ENH ) and the running average temperature of an
harmonic oscillator using MD simulations with Nosé-Hoover thermostat: τ = 0.01 ps, Δt = 1 fs

and k = 317 kcal/mol/Å
2
. The block averages are performed every 2000 MD steps

Fig. 6.3 The velocity-position scatter plot. The velocity and position probability density distribu-
tions for an harmonic oscillator using MD simulations with Nosé-Hoover thermostat: τ = 0.01 ps,

Δt = 1 fs and k = 317 kcal/mol/Å
2

Also, a velocity-position scatter plot is shown in Fig. 6.3 to determine the
sampled points. From the comparison of the probability density functions f (x) and
f (v) obtained from the simulations (data points) and the analytical curves, a sparse
sampling of the canonical ensemble resulted. However, these results show that the
sampling is much better than when using the Berendsen thermostat.
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It has been shown (Stoffer 1995) that the Sundman time-transformation destroys
the canonical symplectic structure, and hence the Nosé-Hoover system, Eq. (6.19)
does not have a symplectic structure. However, the dynamics of this system is time-
reversible.

6.2.2.4 Nosé-Hoover Chain of Thermostats

The Nosé Hamiltonian generates configurations from the canonical ensemble,
assuming that the dynamics is ergodic (Nosé 1984c, 1991; Hoover 1985b). Note
that the assumption of the ergodicity can be violated in some cases (Nosé 1991). The
Nosé-Hoover equations have further been extended by the so-called Nosé-Hoover
chains (Tuckerman et al. 1992), which overcome this ergodicity problem. In the
Nosé-Hoover chain of the thermostats approach, a sequence of new thermostats,
each one coupled to the previous, is introduced yielding a chain of thermostats. In
this approach, the uncontrolled fluctuations in the thermostat degrees of freedom
vanish, and hence a better temperature control is achieved. This extension of
the original Nosé-Hoover thermostat method generates a canonical distribution
assuming that the dynamics it is ergodic. The hypothesis of the ergodicity requires
that the dynamics of the system samples the entire phase space, which includes
the thermostat variables (Tobias et al. 1993). Nosé-Hoover chain of thermostats
dynamics generates the canonical ensemble even in special cases where the standard
Nosé-Hoover dynamics failed to do so.

The Nosé-Hoover’s Hamiltonian of the system coupled to a chain of the
thermostats is as follows:

HNC =
gN∑

i=1

⎡

⎣ (p′
i )

2

2s2
i,1mi

+
M−1∑

j=1

π2
i,j

2Qi,j s
2
i,j+1

(6.22)

+ π2
i,M

2Qi,M

+
M∑

j=1

kBT ln si,j

⎤

⎦+ U
(
q1, · · · , qgN

)

To derive the equations for the chains, we have to start with the standard Nosé-
Hoover equations as defined in Eq. (6.19). Now, new M − 1 more thermostats are
introduced, where each one is coupled to the previous, resulting in a Nosé-Hoover
chain of thermostats. Tuckerman and Parrinello (1994) derived the equations of
motion of a system of N particles for the isothermal dynamics. The following
discussion presents the details on the derivation of these equations.

The Hamilton’s equations of motion introduced in Chap. 1 can be used to obtain
the equations of motions for each degree of freedom i:

dq

dτ1
= p′

s2
1m

(6.23)
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dp′

dτ1
= −∇qU(q)

ds1

dτ2
= π1

s2
2Q1

dπ1

dτ2
= (p′)2

s3
1m

− kBT

s1

dsk

dτk+1
= πk

s2
k+1Qk

dπk

dτk+1
= π2

k−1

s3
kQk−1

− kBT

sk
, k = 2, · · · ,M − 1

dsM

dτM
= πM

QM

dπM

dτM
= π2

M−1

s3
MQM−1

− kBT

sM

where the relationships between the scaled times and the real time t are given as
follows:

dτ1 = s1dt (6.24)

dτk = sk−1skdt, (k = 2, · · · , M − 1)

dτM = sMdt

Note that the subscript i in Eq. (6.23) is omitted for simplicity of the appearance.
Substituting the real time variables into Eq. (6.23) using the transformations given
by Eq.(6.24), we obtain:

dq

dt
= p′

s1m
(6.25)

dp′

dt
= −s1∇qU(q)

ds1

dt
= s1

π1

s2Q1

dπ1

dt
= s2

(p′)2

s2
1m

− kBT

s1

dsk

dt
= sk

πk

sk+1Qk
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dπk

dt
= sk+1

π2
k−1

s2
kQk−1

− sk+1kBT , k = 2, · · · ,M − 1

dsM

dt
= sM

πM

QM

dπM

dt
= π2

M−1

s2
MQM−1

− kBT

In the following, we propose some additional transformations of the variables:

p = p′

s1
(6.26)

π̂k = πk

sksk+1
, (k = 1, · · · , M − 1)

π̂M = πM

sM

Substituting the transformations given by Eq. (6.26) into Eq. (6.25), we obtain the
equations of motion in the form:

dq

dt
= p

m
(6.27)

dp

dt
= −∇qU(q)− 1

s1

ds1

dt
p

ds1

dt
= s2

1
π̂1

Q1

dπ̂1

dt
= 1

s1

p2

m
− kBT

s1
− 1

s2

ds2

dt
π̂1 − 1

s1

ds1

dt
π̂1

dsk

dt
= s2

k

π̂k

Qk

dπ̂k

dt
= s2

k−1

π̂2
k−1

skQk−1
− kBT

sk
− 1

sk+1

dsk+1

dt
π̂k − 1

sk

dsk

dt
π̂k

k = 2, · · · ,M − 1

dsM

dt
= s2

M

π̂M

QM

dπ̂M

dt
= s2

M−1

π̂2
M−1

sMQM−1
− kBT

sM
− 1

sM

dsM

dt
π̂M
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Using another transformation of the variables as:

ηk = ln sk (6.28)

πηk = π̂ksk, (k = 1, · · · , M)

we obtain the equations of motion as follows:

dq

dt
= p

m
(6.29)

dp

dt
= −∇qU(q)− πη1

Q1
p

dπη1

dt
= p2

m
− kBT − πη2

Q2
πη1

dπηk

dt
= π2

ηk−1

Qk−1
− kBT − πηk+1

Qk+1
πηk , k = 2, · · · ,M − 1 ,

dπηM

dt
= π2

ηM−1

QM−1
− kBT ,

dηk

dt
= πηk

Qk

, k = 1, · · · ,M .

Note that Eq. (6.29) is written for each degree of freedom such that a massive chain
of thermostats approach is used.

The conserved energy is given by:

ENHC =
gN∑

i=1

⎡

⎣ p2
i

2mi

+
M∑

j=1

(
π2
ηi,j

2Qi,j

+ kBT ηi,j

)⎤

⎦+ U
(
q1, · · · , qgN

)
(6.30)

It has been shown (Liu and Tuckerman 2000) that the NHC method has limited
use because it is only capable of maintaining appropriate required temperature
control in equilibrium. Any perturbation of the system away from the equilibrium
state, such as in the presence of external fields or by motion over the high barrier,
may result in the method not being able to converge. In such cases, however, a chain
of thermostats of a length longer than two can be used, in general, if there is a broad
distribution of vibration frequencies (Jang and Voth 1997).

Example 3 Consider again the harmonic oscillator of the Example 1 subject to
MD simulation using the chain of thermostats approach. We used the following
parameters for the chain: τ = 0.01 ps and the length M = 3. For the integration of
the equations of motion, we used a velocity-Verlet like an algorithm as discussed in
the next chapters with an integration time step of Δt = 1 fs.
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Fig. 6.4 The velocity-position scatter plot. The velocity and position probability density distribu-
tions for an harmonic oscillator using MD simulations with Nosé-Hoover chain of thermostats:

τ = 0.01 ps, Δt = 1 fs and k = 317 kcal/mol/Å
2
. The chain length was M = 3

In Fig. 6.4, we have shown as a scatter plot the velocity versus position along
with the probability density functions of the speed and position. Our results show
a perfect canonical ensemble sampling, and besides, by a direct comparison with
analytical curves, it can be seen that the canonical ensemble distribution in velocity
and position reproduces.

Furthermore, the numerical integrator algorithm possesses a perfect energy
conservation property as indicated by the graphs of the thermostat, the sum of the
kinetic and potential, and total energies shown in Fig. 6.5.

6.2.2.5 Nosé-Poincaré Thermostats

An alternative to the Nosé-Hoover method was proposed in Bond et al. (1999). In
this method, the real-time differential equations were obtained by using a Poincaré
transformation conserving the Hamiltonian structure.

Illustrated in the previous section, too, the traditional real-variable formula-
tion of Nosé-Hoover destroys the symplectic structure associated with the Nosé
Hamiltonian. In this section, we will outline a procedure for scaling time while
preserving the Hamiltonian structure. The method is formulated through a Poincaré
transformation (Zare and Szebehely 1975) of the Hamiltonian H = H(r,p):

H ′ = f (r,p)(H −H0), f > 0 (6.31)
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Fig. 6.5 The total energy of the system (ENH ) and the running average temperature of an
harmonic oscillator using MD simulations with Nosé-Hoover chain of thermostats: τ = 0.01 ps,

Δt = 1 fs and k = 317 kcal/mol/Å
2
. The chain length was M = 3. The block averages are

performed every 2000 MD steps

where f is a “time scaling” function, and the constant H0 is the initial value of
H . Along the energy slice H = H0, the dynamics of the transformed system are
equivalent to the original system, up to a transformation of time. This can be proven
by first writing the Hamilton equations of motion

ṙi = f (r,p)
∂H

∂pi

+ (H −H0)
∂f

∂pi

, (6.32)

ṗi = −f (r,p)
∂H

∂ri
− (H −H0)

∂f

∂ri

then observe that when H = H0, the equations are the same as the original equations
expressed in the real-time variable, t , related to t ′ by

dt ′

dt
= f (r,p)

Now, we consider the Poincaré transformation, f (r,p) = s, applied to a slightly
modified version of the Nosé extended Hamiltonian in Eq. (6.10):

HNP (r,p′, s, π) = s
(
HN

(
r,p′, s, π

)−H0
)

(6.33)

= s

(
N∑

i=1

(p′i )2

2mis2 + U(r)+ π2

2Q
+ gNkBT ln s −H0

)
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where gN is the number of degrees of freedom of the real system, HN is the
Nosé Hamiltonian (see Eq. (6.10)), and H0 is chosen such that the Nosé-Poincaré
Hamiltonian, HNP , is zero when evaluated at the initial conditions.

Nosé-Poincaré Hamiltonian are the same as those given above for the Nosé
system (Eq. (6.12)), except that the right-hand side is multiplied by the thermostat
variable s:

ṙi = p′i
smi

,

ṗ′i = −s∇iU(r),

ṡ = sπ/Q,

π̇ = −ΔH +
N∑

i=1

(p′i )2

s2mi

− gNkBT (6.34)

Here, the derivatives are with respect to the real time variable t , and ΔH = HN −
H0:

ΔH =
N∑

i=1

(p′i )2

2mis2 + U(r)+ π2

2Q
+ gNkBT ln s −H0 (6.35)

The dynamics governed by Eq. (6.34) can be shown to sample from the canonical
distribution in the variables r and p′/s, in a similar manner to that used for Nosé’s
method, if the modified system is ergodic. In the canonical ensemble, the partition
function is obtained as:

Z = 1

N !hgN
∫

ds

∫
dπ

∫
dr

∫
dp′δ(HNP − 0) (6.36)

Using Eqs. (6.33) and (6.10) we get:

Z = 1

N !hgN
∫

ds

∫
dπ

∫
dr

∫
dp′ (6.37)

× δ

(
s

[
N∑

i=1

(p′i )2

2s2mi

+ U(r)+ π2

2Q
+ gNkBT ln(s)−H0

])

We can substitute p′/s = p, the volume element then becomes dp′ = sgN dp. No
upper limit exists in the momentum space, hence the order of integration of dp and
ds changes as:

Z = 1

N !hgN
∫

dπ

∫
dr

∫
dpsgN (6.38)
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× δ

(
s

[
N∑

i=1

p2
i

2mi

+ U(r)+ π2

2Q
+ gNkBT ln(s)−H0

])

For a function r(s) with a single simple root, s = s0, the equivalence relation for δ
becomes: δ[r(s)] = δ[s − s0]/r ′(s0), then,

δ

(
s

[
N∑

i=1

p2
i

2mi

+ U(r)+ π2

2Q
+ gNkBT ln(s)−H0

])
(6.39)

= 1

gNkBT
δ

(
s − exp

[
− 1

gNkBT

(
N∑

i=1

p2
i

2mi

+ U(r)+ π2

2Q
−H0

)])

Substituting Eq. (6.39) into Eq. (6.38) we get:

Z = 1

N !hgN
∫

dπ

∫
dr

∫
dp

sgN

gNkBT
(6.40)

× δ

(
s − exp

[
− 1

gNkBT

(
N∑

i=1

p2
i

2mi

+ U(r)+ π2

2Q
−H0

)])

= 1

gNkBT

1

N !hgN
∫

dπ

∫
dr

∫
dp

× exp

[
− 1

kBT

(
N∑

i=1

p2
i

2mi

+ U(r)+ π2

2Q
−H0

)]

After integrating with respect to π we get:

Z =
(

2πQ

g2
NkBT

)1/2

exp (H0/kBT )Zc

where Zc is the partition function of the canonical ensemble:

Zc = 1

N !hgN
∫

dr
∫

dp exp

[
− 1

kBT

(
N∑

i=1

p2
i

2mi

+ U(r)

)]

The well-known Gaussian integral was used to perform the integration over the
thermostat variable π :

+∞∫

−∞
exp

(
− x2

2QkBT

)
dx = √

2πQkBT
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Again, a sampling with HNP in the scaled time space keeping the energy constant
is equivalent to a sampling of the original system at constant temperature T in real-
time.

Example 4 Consider the harmonic oscillator of the Example 1 using MD simulation
with Nosé-Poincaré thermostat. Equations of motion were integrated using the
numerical integrator algorithm in Bond et al. (1999) with an integration time step
Δt = 1 fs. The thermostat mass was calculated using the f = 100 ps−1. The
initial velocity of the particle was generated randomly using a Maxwell-Boltzmann
distribution at the target temperature of T0 = 300 K. While the initial position was
random.

In Fig. 6.6, we show the scatter plot of the velocity versus displacement of
the harmonic oscillator. It is surprising that the dynamics governed by the Nosé-
Poincaré thermostat perform as good as Nosé-Hoover single thermostat in terms
of the sampling the canonical distribution, as also can be indicated by direct
comparison with analytical probability distributions (see Fig. 6.6) even though they
form a symplectic structure. It seems that the time-reversibility of the equations
of motion is a substantial property for sampling. However, the Nosé-Poincaré
dynamics show an excellent energy conservation property as indicated by the graph
in Fig. 6.7, which is because the symplectic dynamical structures have a conserved
Hamiltonian function. Our results suggest no drift on the Hamiltonian during the
MD simulation run.

Fig. 6.6 The position-velocity scatter plot and the running average temperature of an harmonic
oscillator using MD simulations with Nosé-Poincaré thermostat: τ = 0.01 ps, Δt = 1 fs and

k = 317 kcal/mol/Å
2

and x0 = 1.523 Å
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Fig. 6.7 The Hamiltonian of the system (HNP ) of the harmonic oscillator using MD simulations

with Nosé-Poincaré thermostat: τ = 0.01 ps, Δt = 1 fs and k = 317 kcal/mol/Å
2
. The block

averages are performed every 2000 MD steps

6.2.2.6 Nosé-Poincaré Chain of Thermostats

In a similar manner to the Nosé equations, thermostatting chains, consisting of
M thermostats, can be added to the Nosé-Poincaré equation, with some additional
terms as follows,

HNPC = s1

[
N∑

i=1

(p′i )2

2mis
2
1

+ U(r)+
M−1∑

i=1

(π ′
i )

2

2Qis
2
i+1

(6.41)

+ π2
M

2QM

+ gNkBT ln s1 +
M∑

i=2

kBT ln si −H0

]

where H0 is Eq. (6.22) evaluated at the initial conditions.
The equations of motion are,

ṙi = p′i
mis1

(6.42)

ṗ′i = −s1∇iU(r)

ṡ1 = s1
π ′

1

Q1s
2
2

π̇ ′
1 =

N∑

j=1

(p′j )2

mjs
2
1

− gNkBT −ΔH
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ṡk = s1
π ′
k

Qks
2
k+1

π̇ ′
k = s1

(
(π ′

k−1)
2

Qk−1s
3
k

− kBT

sk

)
, k = 2, · · · ,M − 1

ṡM = s1πM

QM

π̇M = s1

(
π2
M−1

QM−1s
3
M

− kBT

sM

)

Here, p = p′/s1 represents the momentum of the real particle and, in addition, the
derivatives are to the real-time.

A proof shows that these equations generate canonical ensemble on the (r,p)
variables. For that, we write the partition function for this ensemble as

Z = 1

N !hgN
∫

dπM

∫
dπM−1 · · ·

∫
dπ1

∫
dsM · · ·

∫
ds1 (6.43)

×
∫

dp′
∫

drδ (HNPC − 0)

where π ′
k/sk+1 ≡ πk for k = 1, · · ·M − 1. Substituting p′/s1 = p, the volume

element dp′ then becomes p′ = s
gN
1 dp. There is no maximum value of the

momentum, and hence we can change the order of integration of dp and ds1 giving
the integral over s1 as,

∫
ds1δ(HNPC) =

∫
ds1s

gN
1 (6.44)

× δ

(
s1

[
N∑

i=1

p2
i

2mi

+ U(r)+
M−1∑

i=1

π2
i

2Qi

+ π2
M

2QM

+ gNkBT ln s1 +
M∑

i=2

kBT ln si −H0

])

Using the equivalence relation for δ, δ[r(s1)] = δ[s1 − x0]/ | r ′(x0) |, where x0 is
the root of r(s1) = 0, to get

∫
ds1δ(HNPC) =

∫
ds1

s
gN
1

gNkBT
δ (s1 (6.45)

− exp

[
− 1

gNkBT

(
N∑

i=1

p2
i

2mi

+ U(r)
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+
M−1∑

i=1

π2
i

2Qi

+ π2
M

2QM

+
M∑

i=2

kBT ln si −H0

)])

= 1

gNkBT
exp

[
− 1

kBT

(
N∑

i=1

p2
i

2mi

+ U(r)

+
M−1∑

i=1

π2
i

2Qi

+ π2
M

2QM

+
M∑

i=2

kBT ln si −H0

)]

The remaining thermostats variables can be integrated out as in the previous section
to get the partition function as:

Z = C
1

N !hgN
∫

dp
∫

dr exp

⎛

⎜⎜⎜⎜⎝

−
[
∑N

i=1
p2
i

2mi

+ U(r)

]

kBT

⎞

⎟⎟⎟⎟⎠
(6.46)

where

C = (2π)
M
2 (kBT )

M
2 −1ΠM

i=1Q
1
2
i

gN
exp (H0/kBT )

Here, the following integration was used to simplify the expression for Z:

+∞∫

−∞
dπ1 · · ·

+∞∫

−∞
dπM exp

(
− 1

kBT

M∑

i=1

π2
i

2Qi

)
=

M∏

i=1

(2πQikBT )
1
2

Example 5 As an illustration, we considered the harmonic oscillator of the Exam-
ple 1.

Figure 6.8 shows a scatter plot of the velocity versus displacement of the
harmonic oscillator. Again, surprisingly, the dynamics governed by the Nosé-
Poincaré chain of thermostats does not reproduce the fluctuations of the velocities
and positions at the target temperature, as seen from the comparison with analytical
curves. However, the sampled points follow the canonical distribution. Furthermore,
the chain of thermostats can control the fluctuations of the temperature around the
target value, T = 300 K, as shown in Fig. 6.9a.

On the other hand, the Nosé-Poincaré chain of thermostats dynamics have perfect
conservation of the Hamiltonian, without drift as can be seen in Fig. 6.9b, which is
a property of the symplectic structure of the equations of motion that is preserved
by the numerical integrator.
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Fig. 6.8 The position-velocity scatter plot and the running average temperature of an harmonic
oscillator using MD simulations with Nosé-Poincaré chain of thermostats: τ = 0.1 ps, Δt = 1 fs

and k = 317 kcal/mol/Å
2

and x0 = 1.523 Å. Thermostats chain length was M = 3

Fig. 6.9 (a) The running average temperature of an harmonic oscillator using MD simulations

with Nosé-Poincaré chain of thermostats: τ = 0.01 ps, Δt = 1 fs and k = 317 kcal/mol/Å
2
. The

chain length was M = 3. (b) The Hamiltonian of the system (HNPC ) of the harmonic oscillator
using MD simulations with Nosé-Poincaré chain of thermostats: τ = 0.1 ps, Δt = 1 fs and k =
317 kcal/mol/Å

2
. Thermostats chain length was M = 3. The block averages are performed every

2000 MD steps
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6.2.2.7 Gaussian Thermostat

Another alternative approach to control the temperature is to apply Gauss’s principle
of nonholonomic constraints (Evans et al. 1983; Edberg et al. 1986), which is called
the Gaussian thermostat method. In the nonholonomic case, the constraints are
defined by the function g(r, v, t) = 0. The constraint is nonholonomic because
g is a function of the velocities. The derivative of g with respect to the time t yields
a relation that restricts the accelerations, a, as follows:

∂g(ri , vi , t)
∂t

= ∂g

∂ri

dri
dt

+ ∂g

∂vi

dvi
dt

+ ∂g

∂t
(6.47)

= ∂g

∂ri
vi + ∂g

∂vi
ai + ∂g

∂t

The constant temperature constraint has the following nonlinear form:

g(r, v, t) = 1

2

N∑

i=1

miv2
i −

1

2
gNkBT (6.48)

with gN being the number of degrees of freedom in the system. In Eq. (6.48), T is
the target temperature. Gauss’s principle yields an equation:

N∑

i=1

mivi · ai =
N∑

i=1

Fi · vi = 0 (6.49)

To derive the Gaussian equations of motion with the nonholonomic constraint
condition, miai is substituted by Fi − ξ̇mivi :

N∑

i=1

vi ·
(
Fi − ξ̇mivi

) =
N∑

i=1

Fi · vi − ξ̇

N∑

i=1

miv2
i = 0

Solving it for the time derivative of the friction coefficient, ξ̇ , gives:

ξ̇ =
∑N

i=1 Fi · vi∑N
i=1 miv2

i

(6.50)

Note that the equations of motion become for i = 1, 2, · · · , N :

q̇i = pi

mi

ṗi = Fi − ξ̇pi
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which is equivalent to adding a dumping term into the equations of motion to keep
the kinetic energy constant. Note that ξ̇ is a time dependent coefficient, therefore,
it is updated at every time step of the molecular dynamics simulations along the
velocities and coordinates using Eq. (6.50). The conserved energy associated with
Eq. (6.50) is simply given as follows:

EGauss = 1

2

∑

i

miv
2
i + U(ri , · · · , rN) (6.51)

6.2.2.8 Langevin Dynamics

The Langevin dynamics is a stochastic method alternative to Newtonian dynam-
ics, used in many biomolecular simulations for various numerical and physical
reasons. The Langevin model has been employed to avoid explicit representation
of water molecules in the molecular dynamics simulation of macromolecular
simulations (Pastor 1994). Other applications of the Langevin model include the
treatment of the droplet surface effects (Simonson 1996; Brünger et al. 1982), repre-
sentation of the hydration shell models in large systems (Beglov and Roux 1994a,b,
1995), and enhancement of the conformation sampling (Loncharich et al. 1992;
Derreumaux and Schlick 1995; Klimov and Thirumalai 1997; Doniach and Eastman
1999). Besides, the Langevin model is used to counteract numerical damping while
masking mild instabilities of certain long-timestep approaches (Zhang and Schlick
1993, 1994).

The Langevin model (McQuarrie 2000) consists of additional friction and
random forces to the systematic forces, which aim to represent a physical simple
heat bath for the macromolecule by accounting for molecular collisions. The
simplest Langevin equation in a continuous form is given as follows:

mr̈(t) = −∇U(r(t))− γmṙ(t)+ R(t) (6.52)

Here, γ denotes the collision parameter (in reciprocal units of time), which is
known as the damping constant. The random-force vector R represents a stationary
Gaussian process with statistical properties characterized as the following:

〈R(t)〉 = 0 , (6.53)

〈R(t)R(t ′)T 〉 = 2γ kBTmδ(t − t ′) (6.54)

where kB is the Boltzmann constant, T is the target temperature, and δ is the usual
Dirac symbol.

The magnitude of γ gives the relative strength of the internal forces acting on
the system concerning the random (external) forces. Therefore, with increasing γ ,
we also increase the inertial relative to the diffusive, Brownian-like, regime. The
Brownian range is used, by employing stable algorithms, to explore more efficiently
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configuration phase spaces of the systems with a higher degree of the structure
flexibility (Wade et al. 1993; Case 1994; Barth and Schlick 1998c).

The Stoke’s law for a hydrodynamic particle of radius a is often used as a
physical value of γ for the particle of mass m:

γ = 6πκa/m (6.55)

where κ defines the solvent viscosity. For example, the collision frequency of the
macromolecule atoms, such as the protein, immersed in a solvent having a viscosity
of 1 cP (Centipoise) at room temperature, γ = 50 ps−1 (Pastor et al. 1988), which
is in the range of the estimated value for the water (γ = 54.9 ps−1).

An alternative method to choose an appropriate value for γ for a system modeled
by the simple Langevin equation is to use the following relation:

Dt = kBT /mγ (6.56)

where Dt is the experimental translation diffusion constant in the diffusive limit.

6.2.2.9 Remarks

Often, in the simulation of a macromolecular system in an explicit solvent envi-
ronment, such as water molecules and salt, we encounter distinct sets of degrees
of freedom characterized by either very different characteristic frequencies or very
different heating rates. In this case, the coupling all the degrees of freedom to a
single thermostat may cause different convergence temperatures for the distinct
subsets of degrees of freedom of the system. That is because of the different rates
of the exchange of kinetic energy between the subset of the degrees of freedom and
the thermostat. In particular, in the simulations of the macromolecular systems, this
is called “hot solvent” and “cold solute” problem. Because the solvent dynamics
is significantly affected by the use of the long-range truncation, in particular,
electrostatic interactions, and hence the coupling of all system to a single thermostat
may yield an average solute temperature to be lower than the average solvent
temperature. In this case, coupling separately the solute and solvent degrees of
freedom to two different thermostats can be used to eliminate the problem.

Another problem appears if we are using an MD simulation program that
(incorrectly) couples the thermostats directly to the atomic velocities when initially
the total linear and angular momenta of the system are not set to zero. In such
a situation, the linear and angular momenta of the system are not conserved.
Depending on the numerical integrator used, these quantities are not conserved even
if initially are set to zero, due to the numerical errors. In this case, the simulations
have shown that the thermostat injects kinetic energy from high frequencies to low-
frequency degrees of freedom, a phenomenon known as the “flying ice cube effect”.

A good practice to perform a simulation in the NVT ensemble is first to run the
equilibration with the Berendsen thermostat at a small value of τ (e.g. τ = 0.01 ps).
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After the system is equilibrated, τ should be increased to get a good equilibrium
run. Then, if a proper canonical ensemble with correct fluctuations is needed at the
target temperature, the Nose-Hoover chain of thermostats can be used.

6.2.3 Isothermal-Isobaric Ensemble

6.2.3.1 Nosé-Andersen Method

In Andersen (1980), for constant pressure dynamics, the volume V and its conjugate
momentum πV , as additional variables are introduced. The new variables couple
to the system dynamics in such a way as to guarantee that the trajectory samples
from an isobaric statistical distribution, assuming that the ergodicity hypothesis is
satisfied. Similarly, to generate a constant temperature distribution, Nosé (1984c)
introduced a new mechanical variable s with a conjugate momentum πs that couples
into the system as described in the previous sections. These two extensions are
combined to construct a Hamiltonian system whose trajectories can be shown to
sample an isothermal-isobaric ensemble (Nosé 1984b).

This combined Nosé-Andersen Hamiltonian function is given by

HNA = V −2/d
N∑

i=1

(p′i )2

2mis2
+ U(V 1/dr′) (6.57)

+ (π ′
V )

2

2s2QV

+ π2
s

2Qs

+ (gN + 1)kBT ln s + p0V

where p′i is the conjugate momentum to the scaled position vector r′i = V −1/dri ,
p0 is the external pressure, d is the dimension of the space, and gN is number of
degrees of freedom of the original system. The quantities QV and Qs are the masses
of the Andersen “piston” and the Nosé thermostat variables, respectively.

Applying the Hamiltonian equations of motion, the following equations of
motion governing this system can be obtained:

dr′i
dt ′

= p′i
s2miV 2/d (6.58)

dp′i
dt ′

= −V 1/d∇ri U(r)

dπ ′
V

dt ′
= P − p0
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dV

dt ′
= π ′

V

s2QV

dπs

dt ′
= V −2/d

N∑

i=1

(p′i )2

s3mi

+ (π ′
V )

2

s3QV

− (gN + 1)
kBT

s

ds

dt ′
= πs/Qs

where P is the instantaneous pressure given by

P = 1

dV

[
N∑

i=1

(p′i )2

miV 2/ds2 +
N∑

i=1

∂U

∂r′i
r′i − (V d)

∂U

∂V

]
(6.59)

where explicit dependence of the potential U on the volume V is assumed.
The compressibility of the phase space defined in Chap. 1 (Sect. 1.11) is given

as:

κ(r′,p′, V , π ′
V , s, πs, t) =

gN∑

i=1

(
∂ẋ′i
∂x′i

+ ∂ṗ′
i

∂p′
i

)

+ ∂π̇ ′
V

∂π ′
V

+ ∂V̇

∂V

+ ∂π̇s

∂πs

+ ∂ṡ

∂s
= 0

where gN = 3N is the number of degrees of freedom.
Therefore, the Jacobian J (r′,p′, V , π ′

V , s, πs, t) = 1, indicating that the volume
of phase space is an invariant measure, which is expected since the dynamics
governed by Eq. (6.58) are generated by a Hamiltonian function given by Eq. (6.57).

There are two major recognized drawbacks of this approach. First, the time
variable in Nosé dynamics appearing in the equations of motion, Eq. (6.58), is
not the real time, and hence the trajectory generated by numerically integrating
the equations of motion has been transformed back into real-time leading to the
configurations that are not spaced at the fixed real-time intervals. Secondly, the
Hamiltonian is not separable because the kinetic energy and potential energy in the
Hamiltonian function are not only functions of momenta and position variables,
respectively. That makes the use of the standard Verlet/leapfrog approaches not
applicable (Sanz-Serna and M.P Calvo 1995).

Hoover (1985b) introduced a change of variables and a time re-scaling of the
equations of motion, and the new equations of motion obtained in this way generate
the same trajectories as the original Nosé Hamiltonian, but in real time.
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The following transformations of the variables are first suggested:

ri = V 1/dr′i (6.60)

dt = dt ′/s

With these transformations, Eq. (6.58) can be written as:

dri
dt

= p′i
misV 1/d + 1

V d

dV

dt
ri (6.61)

dp′i
dt

= −sV 1/d∇ri U(r)

dπ ′
V

dt
= s(P − p0)

dV

dt
= π ′

V

sQV

dπs

dt
= 1

s

(
N∑

i=1

(p′i )2

V 2/dmis3
+ (π ′

V )
2

s3QV

)
− (gN + 1)kBT

ds

dt
= sπs

Qs

Then, another variable transformation follows, such as

pi = p′i
sV 1/d , (6.62)

πs = sπ̂s ,

π ′
V = sV π̂V

which yields the following equations of motion:

dri
dt

= pi

mi

+ ri
1

V d

dV

dt
(6.63)

dpi

dt
= −∇ri U(r)− pi

1

V d

dV

dt
− pi

1

s

ds

dt

dV

dt
= V

π̂V

QV

dπ̂V

dt
= 1

V
(P − p0)− π̂V

1

s

ds

dt
− π̂V

1

V

dV

dt
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ds

dt
= s2π̂s

Qs

dπ̂s

dt
= 1

s

(
N∑

i=1

(pi )
2

mi

+ V 2 π̂2
V

QV

)
− (gN + 1)kBT /s − π̂s

1

s

ds

dt

To further simplify Eq. (6.63), the following changes on the variables are introduced:

ε = 1

d
lnV , πε = π̂V /d ,

η = ln s , πη = sπ̂s

Then, the equations of motion given by Eq. (6.63) take the form:

dri
dt

= pi

mi

+ ri
πε

QV

(6.64)

dpi

dt
= −∇ri U(r)− pi

πη

Qs

− pi

πε

QV

dπε

dt
= (V d)(P − p0)− πε

πη

Qs

dV

dt
= V d

πε

QV

dπη

dt
=

N∑

i=1

p2
i

mi

+ π2
ε

QV

− (gN + 1)kBT

dη

dt
= πη

Qs

where the instantaneous pressure is given by:

P = 1

V d

(
N∑

i=1

p2
i

mi

+
N∑

i=1

[−∇ri U(r1, · · · , rN)
] · ri − (V d)

∂U

∂V

)
(6.65)

When the long-range interactions, such as U(r) ∝ 1/rn, n ≤ 3, or long-range
corrections to short-range potentials are applied, then an explicit dependence of the
potential energy on the volume is considered to be present. Cutting off long-range
interactions or neglecting long-range corrections in small systems can however give
rise to incorrect results (Allen and Tildesley 1989). In our equations, the barostat
momentum πε has also been coupled to the thermostat momentum πη.

The Nosé-Hoover dynamics governed by Eq. (6.64) is considered a standard
in molecular simulation. However, the change of variables that transformed the
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Nosé Hamiltonian to the Nosé-Hoover equations of motion is not a canonical
transformation, and hence the total energy is not a Hamiltonian, but it is still a
conserved quantity.

It is worth noting, however, that the Hoover’s equations (Eq. (6.64)) satisfy the
constraint that the volume is greater or equal to zero:

V (t) = V (0) exp

[
d

QV

∫ t

0
dt ′πε(t

′)
]

The equations Eq. (6.64) also have a conserved quantity, representing the total
energy of the system:

HNPT =
N∑

i=1

p2
i

2mi

+ π2
ε

2QV

+ π2
η

2Qs

+ U(r, V )+ (gN + 1)kBT η + p0V (6.66)

For that, calculating the derivative with respect to time t as follows:

dHNPT

dt
=

N∑

i=1

[∇pi
HNPT · ṗi + ∇riHNPT · ṙi

]
(6.67)

+ ∂HNPT

∂πη

π̇η + ∂HNPT

∂η
η̇ + ∂HNPT

∂πε

π̇ε + ∂HNPT

∂V
V̇

Substituting the equations of motion, Eq. (6.64), we get:

dHNPT

dt
= 0 . (6.68)

The compressibility of the phase space is defined as:

κ(r,p, V , πε, η, πη, t) =
gN∑

i=1

(
∂ẋi

∂xi
+ ∂ṗi

∂pi

)

+ ∂π̇ε

∂πε

+ ∂V̇

∂V

+ ∂π̇η

∂πη

+ ∂η̇

∂η

= −(gN + 1)
πη

Qs

+ d
πε

QV

Therefore, the Jacobian is obtained as (Arnold 1978):
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J (r,p, V , πε, η, πη, t) = exp

⎛

⎝
t∫

t0

κ(r,p, V , πε, η, πη, t) dt

⎞

⎠

= V exp (−(gN + 1)η)

indicating that the volume of phase space is not invariant measure. The Jacobian
gives the weights of the phase space volume and it is unity for the (Hamiltonian)
systems satisfying the Liouville’s theorem (Arnold 1978), as those described by
Eq. (6.58). In addition, it represents the transformation from the set of variables
(r′,p′, V , π ′

V , s, πs) where J = 1 to the set of variables (r,p, V , πε, η, πη),
through the variable transformations shown above, with J (r,p, V , πε, η, πη, t) =
V exp (−(gN + 1)η).

The partition function associated with the dynamics can be generated, under
the assumption of ergodicity, the Jacobian (J−1), and the conserved quantity as
follows (Arnold 1978):

ZNPT = 1

N !hgN
∫

dπη

∫
dπε

∫
dη

∫
dV

∫
dp

∫

D(V )

drV −1 (6.69)

× exp [(gN + 1)η] δ(HNPT − E)

Using the properties of the δ function as described on the previous sections, we can
integrate according to η to get:

ZNPT = exp [E/kBT ]

(gN + 1)kBT

1

N !hgN
∫

dπη

∫
dπε

∫
dV

∫
dp

∫

D(V )

drV −1

(6.70)

× exp

[
− 1

kBT

(
N∑

i=1

p2
i

2mi

+ U(r, V )

+ π2
ε

2QV

+ π2
η

2Qs

+ p0V

)]

Here, D(V ) denotes the domain defined by the volume. It is shown (Hoover 1985b;
Nosé and Klein 1983) that ZNPT is not the isothermal-isobaric partition function,
see also discussion in Martyna et al. (1994).

In order to generate the isothermal-isobaric ensemble, the Hoover’s equations of
motion, Eq. (6.64), are modified as the following (Melchionna et al. 1993; Martyna
et al. 1994)

dri
dt

= pi

mi

+ (ri − rcom)
πε

QV

(6.71)
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dpi

dt
= −∇ri U(r)− pi

πη

Qs

− pi

πε

QV

dπε

dt
= (V d)(P̃ − p0)− πε

πη

Qs

dV

dt
= V d

πε

QV

dπη

dt
=

N∑

i=1

p2
i

mi

+ π2
ε

QV

− (gN + 1)kBT

dη

dt
= πη

Qs

where the center of mass rcom is defined as:

rcom =
∑N

i=1 miri∑N
i=1 mi

The instantaneous pressure is calculated as:

P̃ = 1

V d

(
N∑

i=1

p2
i

mi

+
N∑

i=1

[−∇ri U(r1, · · · , rN)
] · (ri − rcom) (6.72)

− (V d)
∂U

∂V

)

The equations of motion given by Eq. (6.71) provide the same conserved quantity as
the original set (Eq. (6.66)), which can be shown easily by replacing Eq. (6.71) into
Eq. (6.67) to find that Eq. (6.68) is satisfied.

Furthermore, the Jacobian is J = exp [−(gN + 1)η]. Thus, replacing this
Jacobian into Eq. (6.69), we get:

ZNPT = 1

N !hgN
∫

dπη

∫
dπε

∫
dη

∫
dV

∫
dp

∫

D(V )

dr (6.73)

× exp [(gN + 1)η] δ(HNPT − E)

Similarly, we can integrate according to η, using the properties of the δ function:

ZNPT = exp [E/kBT ]

(gN + 1)kBT

1

N !hgN
∫

dπη

∫
dπε

∫
dV

∫
dp

∫
dr (6.74)

× exp

[
− 1

kBT

(
N∑

i=1

p2
i

2mi

+ U(r)
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+ π2
ε

2QV

+ π2
η

2Qs

+ p0V

)]

where the dependence of U on V is omitted.
Then, an integration according to πε and πη yield:

ZNPT = exp [E/kBT ]

gN + 1

2πkBT

p0

√
QVQs

1

N !hgN
∫

dp
∫

dr (6.75)

× exp

[
− 1

kBT

(
N∑

i=1

p2
i

2mi

+ U(r)

)]

which shows that an isothermal-isobaric ensemble is generated. In the case of no
external forces (Melchionna et al. 1993), Fcom = 0, it can be seen that P̃ = P .

Martyna et al. (1994) have proposed alternative equations of motion:

dri
dt

= pi

mi

+ ri
πε

QV

(6.76)

dpi

dt
= −∇ri U(r)− pi

πη

Qs

−
(

1 + d

gN

)
pi

πε

QV

dπε

dt
= V d(P̃ − p0)− πε

πη

Qs

+ d

gN

N∑

i=1

p2
i

mi

dV

dt
= V d

πε

QV

dπη

dt
=

N∑

i=1

p2
i

mi

+ π2
ε

QV

− (gN + 1)kBT

dη

dt
= πη

Qs

It can be shown that the compressibility of the phase space is determined as:

κ(r,p, V , πε, η, πη, t) =
gN∑

i=1

(
∂ẋi

∂xi
+ ∂ṗi

∂pi

)

+ ∂π̇ε

∂πε

+ ∂V̇

∂V

+ ∂π̇η

∂πη

+ ∂η̇

∂η

= −(gN + 1)
πη

Qs
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Therefore, the Jacobian is obtained as (Arnold 1978):

J (r,p, V , πε, η, πη, t) = exp

⎛

⎝
t∫

t0

κ(r,p, V , πε, η, πη, t) dt

⎞

⎠

= exp (−(gN + 1)η)

These equations, Eq. (6.76), have the same conserved quantity as Hoover’s
original set, and the Jacobian is J = exp [−(gN + 1)η] and as shown above for
Eq. (6.71), they generate the isothermal-isobaric partition function.

To asses the differences between the set of equations Eqs. (6.71) and (6.76), we
start with analyzing the phase space as in Tobias et al. (1993).

First, we show that the conservation law, Fcom = 0, can affect the volume
distribution function generated by the modified equations of motion, Eq. (6.71). In
general, satisfying the Liouville equation for the entire distribution is insufficient to
guarantee that the individual pieces are properly generated.

The distribution function of the reduced phase space (no positions, V,p only)
generated by the modified equations of motion, Eq. (6.71), is

ZNPT = exp [E/kBT ]

(gN + 1)kBT

∫
dπη

∫
dπε

∫
dV (6.77)

× V gN−1 exp

[
− 1

kBT

(
N∑

i=1

p2
i

2mi

+ π2
ε

2QV

+ π2
η

2Qs

+ p0V

)]

While for equations Eq. (6.76), the partition functions is:

ZNPT = exp [E/kBT ]

(gN + 1)kBT

∫
dπη

∫
dπε

∫
dV (6.78)

× V gN exp

[
− 1

kBT

(
N∑

i=1

p2
i

2mi

+ π2
ε

2QV

+ π2
η

2Qs

+ p0V

)]

which is a correct NPT ensemble.
Also for the general case, Fcom = 0 and P̃ = P + rcom · Fcom, the equations of

motion, Eq. (6.76), have the same problem (Melchionna et al. 1993).

6.2.3.2 Nosé-Andersen Chain of Thermostats Method

Suppose we have a chain of M thermostats coupled to system of N particles
interacting via the potential energy function of the coordinates U(r1, · · · , rN). In
addition, there is a thermostat chain of length M coupled to the barostat degrees of
freedom. Then, the Nosé-Andersen chain of thermostats Hamiltonian is given by:
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Hchain
NPT =

N∑

i=1

(p′i )2

2s2
1,pV

2/dmi

+ U
(
V 1/dr

)
(6.79)

+
M−1∑

k=1

π2
sk,p

2Qsk,p s
2
k+1,p

+ π2
sM,p

2QsM,p

+ gNkBT ln s1,p + kBT

M∑

k=2

ln sk,p

+ π2
V

2s2
1,bQV

+ p0V

+
M−1∑

k=1

π2
sk,b

2Qsk,b s
2
k+1,b

+ π2
sM,b

2QsM,b

+ kBT

M∑

k=1

ln sk,b

Note that M and M, in practice, do not have to be the same.
Using the Hamiltonian equations for a Hamiltonian system, we get the following

equations of motion for the system:

dr′i
dτ1,p

= p′i
s2

1,pmiV 2/d
(6.80)

dp′i
dτ1,p

= −V 1/d∇ri U(r)

dπs1,p

dτ2,p
=

N∑

i=1

(p′i )2

s3
1,pV

2/dmi

− gN
kBT

s1,p

ds1,p

dτ2,p
= πs1,p

s2
2,pQs1,p

dπsk,p

dτk+1,p
= π2

sk−1,p

s3
k,pQk−1,p

− kBT

sk,p

dsk,p

dτk+1,p
= πsk,p

s2
k+1,pQsk,p

k = 2, · · · ,M − 1

dπsM,p

dτM,p

= π2
sM−1,p

s3
M,pQM−1,p

− kBT

sM,p

dsM,p

dτM,p

= πsM,p

QsM,p

dπV

dτ1,b
= P − p0
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dV

dτ1,b
= πV

s2
1,bQV

dπs1,b

dτ2,b
= π2

V

s3
1,bQV

− kBT

s1,b

ds1,b

dτ2,b
= πs1,b

s2
2,bQs1,b

dπsk,b

dτk+1,b
= π2

sk−1,b

s3
k,bQk−1,b

− kBT

sk,b

dsk,b

dτk+1,b
= πsk,b

s2
k+1,bQsk,b

k = 2, · · · ,M− 1

dπsM,b

dτM,b

= π2
sM−1,b

s3
M,b

QM−1,b
− kBT

sM,b

dsM,b

dτM,b

= πsM,b

QsM,b

where

dτ1,p = s1,pdt (6.81)

dτk,p = sk−1,psk,pdt , k = 2, · · · ,M − 1

dτM,p = sM,pdt

dτ1,b = s1,bdt

dτk,b = sk−1,bsk,bdt , k = 2, · · · ,M− 1

dτM,b = sM,bdt

Substituting the transformation given by Eq. (6.81) along with the position transfor-
mation: ri = V 1/dr′i into Eq. (6.82), we get:

dri
dt

= p′i
s1,pmiV 1/d + 1

V d

dV

dt
ri (6.82)

dp′i
dt

= −s1,pV
1/d∇ri U(r)

dπs1,p

dt
= s2,p

N∑

i=1

(p′i )2

s2
1,pV

2/dmi

− s2,pgNkBT
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ds1,p

dt
= s1,p

πs1,p

s2,pQs1,p

dπsk,p

dt
= sk+1,p

π2
sk−1,p

s2
k,pQk−1,p

− sk+1,pkBT

dsk,p

dt
= sk,p

πsk,p

sk+1,pQsk,p

k = 2, · · · ,M − 1

dπsM,p

dt
= π2

sM−1,p

s2
M,pQM−1,p

− kBT

dsM,p

dt
= sM,p

πsM,p

QsM,p

dπV

dt
= s1,b (P − p0)

dV

dt
= πV

s1,bQV

dπs1,b

dt
= s2,b

π2
V

s2
1,bQV

− s2,bkBT

ds1,b

dt
= s1,b

πs1,b

s2,bQs1,b

dπsk,b

dt
= sk+1,b

π2
sk−1,b

s2
k,bQk−1,b

− sk+1,bkBT

dsk,b

dt
= sk,b

πsk,b

sk+1,bQsk,b

k = 2, · · · ,M− 1

dπsM,b

dt
= π2

sM−1,b

s2
M,b

QM−1,b
− kBT

dsM,b

dt
= sM,b

πsM,b

QsM,b

Then, another change of the variables can be introduced:

pi = p′i
s1,pV 1/d , (6.83)
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πsk,p = sk,psk+1,pπ̂sk,p , k = 1, · · · ,M − 1

πsM,p
= sM,pπ̂sM,p

,

πV = s1,bV π̂V ,

πsk,b = sk,bsk+1,bπ̂sk,b , k = 1, · · · ,M − 1

πsM,b
= sM,bπ̂sM,b

Using these transformations, we obtain the following:

dri
dt

= pi

mi

+ 1

V d

dV

dt
ri (6.84)

dpi

dt
= −∇ri U(r)− 1

dV

dV

dt
pi − 1

s1,p

ds1,p

dt
pi

dπ̂s1,p

dt
= 1

s1,p

N∑

i=1

(pi )
2

mi

− gNkBT

s1,p
− 1

s2,p

ds2,p

dt
π̂s1,p −

1

s1,p

ds1,p

dt
π̂s1,p

ds1,p

dt
= s2

1,p

π̂s1,p

Qs1,p

dπ̂sk,p

dt
= s2

k−1,p

π̂2
sk−1,p

sk,pQk−1,p
− kBT

sk,p
− 1

sk,p

dsk,p

dt
π̂sk,p −

1

sk+1,p

dsk+1,p

dt
π̂sk,p

dsk,p

dt
= s2

k,p

π̂sk,p

Qsk,p

k = 2, · · · ,M − 1

dπ̂sM,p

dt
= s2

M−1,p

sM,p

π̂2
sM−1,p

QM−1,p
− kBT

sM,p

− 1

sM,p

dsM,p

dt
π̂sM,p

dsM,p

dt
= s2

M,p

π̂sM,p

QsM,p

dπ̂V

dt
= 1

V
(P − p0)− ds1,b

dt

π̂V

s1,b
− dV

dt

π̂V

V

dV

dt
= V

π̂V

QV

dπ̂s1,b

dt
= V 2

s1,b

π̂2
V

QV

− kBT

s1,b
− 1

s2,b

ds2,b

dt
π̂s1,b −

1

s1,b

ds1,b

dt
π̂s1,b

ds1,b

dt
= s2

1,b
π̂s1,b

Qs1,b
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dπ̂sk,b

dt
= s2

k−1,b

π̂2
sk−1,b

sk,bQk−1,b
− kBT

sk,b
− 1

sk,b

dsk,b

dt
π̂sk,b −

1

sk+1,b

dsk+1,b

dt
π̂sk,b

dsk,b

dt
= s2

k,b

π̂sk,b

Qsk,b

k = 2, · · · ,M− 1

dπ̂sM,b

dt
= s2

M−1,b

sM,b

π̂2
sM−1,b

QM−1,b
− kBT

sM,b

− 1

sM,b

dsM,b

dt
π̂sM,b

dsM,b

dt
= s2

M,b

π̂sM,b

QsM,b

To further simplify Eq. (6.84), we introduce the following changes on the variables:

ε = 1

d
lnV , πε = 1

d
π̂V ,

ηk,p = ln sk,p , πηk,p = sk,pπ̂sk,p , k = 1, 2, · · · ,M ,

ηk,b = ln sk,b , πηk,b = sk,bπ̂sk,b , k = 1, 2, · · · ,M

Then, Eq. (6.84) reduces to the following equations of motion:

dri
dt

= pi

mi

+ πε

QV

ri (6.85)

dpi

dt
= −∇ri U(r)− πε

QV

pi −
πη1,p

Qs1,p

pi

dπη1,p

dt
=

N∑

i=1

p2
i

mi

− gNkBT − πη2,p

Qs2,p

πη1,p

dη1,p

dt
= πη1,p

Qs1,p

dπηk,p

dt
= π2

ηk−1,p

Qk−1,p
− kBT − dπηk+1,p

Qsk+1,p

πηk,p

dηk,p

dt
= πηk,p

Qsk,p

k = 2, · · · ,M − 1

dπηM,p

dt
= π2

ηM−1,p

QM−1,p
− kBT
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dηM,p

dt
= πηM,p

QsM,p

dπε

dt
= V d (P − p0)− dπη1,b

Qs1,b

πε

1

V d

dV

dt
= πε

QV

dπη1,b

dt
= π2

ε

QV

− kBT − πη2,b

Qs2,b

πη1,b

dη1,b

dt
= πη1,b

Qs1,b

dπηk,b

dt
= π2

ηk−1,b

Qk−1,b
− kBT − dπηk+1,b

Qsk+1,b

πηk,b

dηk,b

dt
= πηk,b

Qsk,b

k = 2, · · · ,M− 1

dπηM,b

dt
= π2

ηM−1,b

QM−1,b
− kBT

dηM,b

dt
= πηM,b

QsM,b

In order for these equations (Eq. (6.85)) to sample an isothermal-isobaric ensem-
ble distribution, we suggested the following changes (see also Melchionna et al.
1993):

dri
dt

= pi

mi

+ πε

QV

(ri − rcom) (6.86)

dpi

dt
= −∇ri U(r)− πε

QV

pi −
πη1,p

Qs1,p

pi

dπη1,p

dt
=

N∑

i=1

p2
i

mi

− gNkBT − πη2,p

Qs2,p

πη1,p

dη1,p

dt
= πη1,p

Qs1,p

dπηk,p

dt
= π2

ηk−1,p

Qk−1,p
− kBT − dπηk+1,p

Qsk+1,p

πηk,p



232 6 Molecular Dynamics Methods in Simulations of Macromolecules

dηk,p

dt
= πηk,p

Qsk,p

k = 2, · · · ,M − 1

dπηM,p

dt
= π2

ηM−1,p

QM−1,p
− kBT

dηM,p

dt
= πηM,p

QsM,p

dπε

dt
= V d

(
P̃ − p0

)
− dπη1,b

Qs1,b

πε

1

V d

dV

dt
= πε

QV

dπη1,b

dt
= π2

ε

QV

− kBT − πη2,b

Qs2,b

πη1,b

dη1,b

dt
= πη1,b

Qs1,b

dπηk,b

dt
= π2

ηk−1,b

Qk−1,b
− kBT − dπηk+1,b

Qsk+1,b

πηk,b

dηk,b

dt
= πηk,b

Qsk,b

k = 2, · · · ,M− 1

dπηM,b

dt
= π2

ηM−1,b

QM−1,b
− kBT

dηM,b

dt
= πηM,b

QsM,b

where rcom is the center of mass of the system. In addition, other forms of the
equations can be adopted (Martyna et al. 1994). We can propose the following
equations, which sample isothermal-isobaric ensemble:

dri
dt

= pi

mi

+ πε

QV

ri (6.87)

dpi

dt
= −∇ri U(r)−

(
1 + d

gN

)
πε

QV

pi −
πη1,p

Qs1,p

pi



6.2 Equations of Motion 233

dπη1,p

dt
=

N∑

i=1

p2
i

mi

− gNkBT − πη2,p

Qs2,p

πη1,p

dη1,p

dt
= πη1,p

Qs1,p

dπηk,p

dt
= π2

ηk−1,p

Qk−1,p
− kBT − dπηk+1,p

Qsk+1,p

πηk,p

dηk,p

dt
= πηk,p

Qsk,p

k = 2, · · · ,M − 1

dπηM,p

dt
= π2

ηM−1,p

QM−1,p
− kBT

dηM,p

dt
= πηM,p

QsM,p

dπε

dt
= V d (P − p0)+ d

gN

N∑

i=1

p2
i

mi

− dπη1,b

Qs1,b

πε

1

V d

dV

dt
= πε

QV

dπη1,b

dt
= π2

ε

QV

− kBT − πη2,b

Qs2,b

πη1,b

dη1,b

dt
= πη1,b

Qs1,b

dπηk,b

dt
= π2

ηk−1,b

Qk−1,b
− kBT − dπηk+1,b

Qsk+1,b

πηk,b

dηk,b

dt
= πηk,b

Qsk,b

k = 2, · · · ,M− 1

dπηM,b

dt
= π2

ηM−1,b

QM−1,b
− kBT

dηM,b

dt
= πηM,b

QsM,b

Both Eqs. (6.86) and (6.87) have the same conserved quantity, known as the total
energy of the extended system, given as the following:
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Echain
NPT =

N∑

i=1

p2
i

2mi

+ U (r) (6.88)

+
M∑

k=1

π2
ηk,p

2Qsk,p

+ gNkBT η1,p + kBT

M∑

k=2

ηk,p

+ π2
ε

2QV

+ p0V +
M∑

k=1

π2
ηk,b

2Qsk,b

+ kBT

M∑

k=1

ηk,b

Example 6 As an illustration, we considered a system of two coupled particles in

three-dimensions with a spring with force constant k = 317 kcal/mol/Å
2

interacting
via the potential:

U(r1, r2) = k

2
(| r1 − r2 | −x0)

2

where x0 = 15.23 Å. In this simulations we used different chain of thermostats
coupled to each degree of freedom of the real system and to barostat. The length
for each of the chain of thermostats was M = 3. The target pressure was p0 = 0
atm, and target temperature was T = 300 K. To each particle was assigned a mass
of 12 amu. The barostat mass was taken

QV = (d + 1)kBT (τb)
2

where τb = 1 ps, and the thermostats masses all equal to:

Qs = kBT (τp)
2

with τp = 0.01 ps. The integration time step was fixed at Δt = 1 fs. The numerical
integrator algorithm introduced in the next chapters is used to integrate the equations
of motion, namely Eq. (6.87). In Fig. 6.10, we show the fluctuations of the instanta-
neous pressure in atmosphere (Fig. 6.10a), temperature in Kelvin (Fig. 6.10b), total
energy components in units of 10× kcal/mol (Fig. 6.10c), and volume V 1/d in Å
(Fig. 6.10d). We used block averages with a block size of 2000 MD steps. Note
that the equations of motion provide an excellent energy conservation (see also
Fig. 6.10c) – furthermore, instantaneous pressure and temperature exhibit typical
fluctuations around the target values. Besides, gentle fluctuations of the distance
between the two particles are observed to adjust the pressure of the system, as shown
in Fig. 6.10d.

In Fig. 6.11, we show the probability density functions of the velocities for a
single degree of freedom (on average) for a real particle of the system (Fig. 6.11a)
and barostat (Fig. 6.11b). Besides, we present the analytical curves. Our results
suggest that the molecular dynamics simulations using Eq. (6.87) produce very well
fluctuations of an isothermal-isobaric ensemble.



Fig. 6.10 The results of MD simulations of a two coupled particles system with a spring with

a force constant k = 317 kcal/mol/Å
2

and x0 = 15.23 Å using Nosé-Hoover-Andersen chain of
thermostats. The chain length was M = 3. (a) trajectory of the pressure (in atm); (b) trajectory
of the temperature (in Kelvin); (c) trajectory of the total energy of the system (Echain

NPT ); and (d)
trajectory of the volume V 1/d . The block averages are performed every 2000 MD steps. Note that
the barostat energy is shifted down by −1.0 kcal/mol for clarity

Fig. 6.11 The results of MD
simulations of a two coupled
particles system with a spring
with a force constant
k = 317 kcal/mol/Å

2
and

x0 = 15.23 Å using
Nosé-Hoover-Andersen chain
of thermostats. The chain
length was M = 3. (a)
Probability density function
of the average velocity
particle degree of freedom
and (b) probability density
function of the barostat
velocity. The block averages
are performed every 2000
MD steps
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6.2.3.3 Nosé-Poincaré-Andersen Method

Applying a Poincaré time transformation to the Hamiltonian, representing a com-
bination of the Nosé-Poincaré thermostat with the Andersen method for constant
pressure as applied in (Sturgeon and Laird 2000), will give the new Nosé-Poincaré-
Andersen Hamiltonian, which can be used to generate the equations of motion for
the isothermal-isobaric ensemble molecular dynamics simulation run.

For a system with an Andersen like-piston, Nosé-Poincaré-Andersen Hamilto-
nian is as follows (Sturgeon and Laird 2000):

H ′
NPT = [HNPT −HNPT (t = 0)] s (6.89)

where HNPT is given by Eq. (6.57), and HNPT (t = 0) is the value of HNPT at time
t = 0, chosen such that ΔH = HNPT − HNPT (t = 0) is zero at the start of the
simulation.

The equations of motion for this system can be obtained by applying the
Hamiltonian equations of motion:

dr′i
dt

= p′i
smiV 2/d

(6.90)

dp′i
dt

= −sV 1/d∇ri U
(
V 1/dr′i

)

dπ ′
V

dt
= s(P − p0)

dV

dt
= π ′

V

sQV

dπs

dt
=

N∑

i=1

(p′i )2

s2V 2/dmi

+ (π ′
V )

2

s2QV

− (gN + 1)kBT −ΔH

ds

dt
= πs

Qs

where again P is the instantaneous pressure given by Eq. (6.65) and the derivatives
are with respect to the real time. Here, p′i , π ′

V , and r′i are related to the real variables
through the following equations:

ri = V 1/dr′i , (6.91)

pi = p′i
sV 1/d ,

πV = π ′
V

s
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6.2.3.4 Nosé-Poincaré-Andersen Chain of Thermostats

The Nosé-Hoover chain of thermostats equations generate configurations from the
correct canonical distribution, given that the dynamics is ergodic, as demonstrated
above. The assumption of the ergodicity is provided by the additional degrees of
freedom in the chain of thermostats. The same idea can also be applied to the
Nosé-Poincaré-Andersen Hamiltonian, resulting in Nosé-Poincaré-Andersen chain
of thermostats:

Hchain
NPT = s1

[
N∑

i=1

(p′i )2

2s2
1V

2/dmi

+ U
(
V 1/dr

)
(6.92)

+
M−1∑

k=1

π2
sk

2Qsk s
2
k+1

+ π2
sM

2QsM

+ π2
V

2s2
1QV

+ (gN + 1)kBT ln s1 +
M∑

k=2

kBT ln sk + p0V −H0

]

Here, we are interested in obtaining the correct timescales of the real-variables, r
and p/s1, hence we employ the following Poincaré transformation:

f (p, r) = s1

M is the length of the chain, and notice that also barostat is coupled to the first
thermostat of the chain. Here, H0 is the value of the Nosé-Andersen chain of
thermostats Hamiltonian at t = 0. Using Hamilton’s equations, we get the equations
of motion as follows:

dr′i
dt

= p′i
s1miV 2/d

(6.93)

dp′i
dt

= −s1V
1/d∇ri U

(
V 1/dr′i

)

dπV

dt
= s1(P − p0)

dV

dt
= πV

s1QV

dπs1

dt
=

N∑

i=1

(p′i )2

s2
1V

2/dmi

+ π2
V

s2
1QV

− (gN + 1)kBT −ΔH

ds1

dt
= πs1s1

Qs1s
2
2

,
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dsk

dt
= πsk s1

Qsk s
2
k+1

,

dπsk

dt
= π2

sk−1
s1

Qsk−1s
3
k

− kBT s1

sk
, k = 2, · · · ,M − 1 ,

dsM

dt
= πsM s1

QsM

,

dπsM

dt
= π2

sM−1
s1

QsM−1s
3
M

− kBT s1

sM

The new thermostats have introduced an implicit coupling to the equations of
motion.

6.2.4 Grand Canonical Ensemble

The grand canonical ensemble generated using MD method has been introduced in
Cagin and Pettitt (1991a,b), Ji and Pettitt (1994), Weerasinghe and Pettitt (1994),
Lo and Palmer (1995), Ji et al. (1992), Palmer and Lo (1994), and Lynch and Pettitt
(1997).

The grand canonical ensemble MD simulation aims to use classical equations of
motion to study systems in which the temperature, volume, and chemical potential
are constant, but the number of particles fluctuates.

That is accomplished by introducing additional variables into the Hamiltonian
function that scale particle velocity and couple a fractional particle to the system via
a continuous function of a coupling parameter, λ. In this case, a continuous particle
number variable ν is defined as

ν = N + λ

At the moment of the simulation time, N is the number of “whole” particles and λ,
which varies between zero and one, represents the extent to which a single particle,
the so-called “fractional” particle, is coupled to the rest of the system.

6.2.4.1 Nosé-Hoover Thermostats for Grand Canonical Ensemble

An extension variable, s, is used to scale the particles momenta as described in the
previous sections. The Hamiltonian function of the grand canonical ensemble may
be written as
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HGCE
NH =

N∑

i=1

(p′i )2

2s2mi

+ (p′f )2

2s2mf

+ π2
s

2Q
+ p2

λ

2W
(6.94)

+ U(r1, · · · , rN)+ V (r1, · · · , rN : rf , λ)

+ (gN + 1)kBT ln(s)+ θ(λ)

where T is the equilibrium temperature, kB is the Boltzmann constant, and gN
represents the degrees of freedom for the physical system, similar to the above
discussion. The functions θ(λ) and (gN+1)kBT ln(s) are the potential energy terms
for the extension variables. In the Hamiltonian function, Eq. (6.94), the third and
fourth terms represent the kinetic energies of the new added variables and allow for
the derivation of their equations of motion. The fictitious mass parameters for the
extension variables, Q and W , have units of (energy× time2). They represent the
extent of coupling between the system and a heat bath at the constant temperature.
The first and fifth terms in Eq. (6.94) are the Hamiltonian for an N particles
system with momenta, p′i (with respect to the scaled time t ′), and positions, ri for
i = 1, 2, · · · , N . The second term represents the kinetic energy of the fractional
particle whose momentum is given by p′f (with respect to the scaled time) and
whose position is given by rf . The sixth term is the fractional particle potential
energy.

The fractional particle interactions may be scaled as

V (r1, · · · , rN : rf , λ) = f (λ)

N∑

i=1

u(ri , rf ) (6.95)

where the function f (λ) must obey the boundary conditions

f (0) = 0, f (1) = 1

The potential energy function of the extension variable characterizing the particle
number is given by

θ(λ) = − [N + h(λ)]μ− Ubias(λ)+ h(λ)μid

where μ is the chemical potential, Ubias(λ) is the bias potential, and μid is the
ideal chemical potential for an N + 1 particles system. This form is chosen to
provide a sampling from a grand canonical ensemble distribution, as will be show in
the following discussion. The functions h(λ) and f (λ) obey to the same boundary
conditions and they are not necessarily identical. The ideal chemical potential may
be defined either with or without a rotational motion contribution. Note that the
rotational motion will add to the value of the total chemical potential constant term,
which, in practice, corresponds to a change in a thermodynamic reference state,
and hence it will not affect the simulation trajectories or measured thermodynamic
properties of the system.
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Equations of motion can be derived from Eq. (6.94) using the Hamiltonian
equations:

dri
dt ′

= p′i
s2mi

, (6.96)

dp′i
dt ′

= −∇ri U(r1, · · · , rN)− f (λ)∇ri u(ri , rf ) ,

drf
dt ′

= p′f
s2mf

,

dp′f
dt ′

= −f (λ)

N∑

k=1

∇rf u(rk, rf ) ,

ds

dt ′
= πs

Q
,

dλ

dt ′
= pλ

W
,

dπs

dt ′
=

N∑

k=1

(p′k)2

s2mk

+ (p′f )2

s2mf

− (gN + 1)kBT ,

dpλ

dt ′
= −df (λ)

dλ

N∑

k=1

u(rk, rf )− dθ(λ)

dλ

These equations are transformed from virtual space to real space by making
this variable change (Zare and Szebehely 1975) dt ′ = sdt , and in addition a
reformulation in terms of real system variables using the following transformations:

pi = p′i/s , i = 1, · · · , N , (6.97)

pf = p′f /s ,

π̂s = πs/s ,

πλ = pλ/s

Then, a new system of non-Hamiltonian equations for the dynamics in the real
variables is obtained:

dri
dt

= pi

mi

, (6.98)

dpi

dt
= −∇ri U(r1, · · · , rN)− f (λ)∇ri u(ri , rf )− sπ̂s

Q
pi ,
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drf
dt

= pf

mf

,

dpf

dt
= −f (λ)

N∑

k=1

∇rf u(rk, rf )− sπ̂s

Q
pf ,

ds

dt
= s2 π̂s

Q
,

dλ

dt
= s2 πλ

W
,

dπ̂s

dt
= 1

s

(
N∑

k=1

(pk)
2

mk

+ (pf )
2

mf

− gNkBT

)
− sπ̂2

s

Q
,

dπλ

dt
= −df (λ)

dλ

N∑

k=1

u(rk, rf )− dθ(λ)

dλ
− sπ̂s

Q
πλ

Making another change of variables similar to what was proposed in Hoover
(1985b):

sπ̂s ≡ πη , ln s ≡ η (6.99)

Then, the second-order differential equations of motion in real space are given by

ṙi = pi

mi

, (6.100)

ṗi = −∇ri U(r1, · · · , rN)− f (λ)∇ri u(ri , rf )− piπη/Q ,

ṙf = pf

mf

,

ṗf = −f (λ)

N∑

k=1

∇rf u(rk, rf )− pf πη/Q ,

η̇ = πη

Q
,

λ̇ = s2 πλ

W
,

π̇η =
N∑

k=1

p2
k

mk

+ p2
f

mf

− gNkBT ,

π̇λ = −df (λ)

dλ

N∑

k=1

u(rk, rf )− dθ(λ)

dλ
− πλπη/Q



242 6 Molecular Dynamics Methods in Simulations of Macromolecules

The grand canonical partition function, ZμVT , may be written in terms of
canonical partition functions,

ZμVT =
∞∑

N=0

ZNVT exp

(
1

kBT
μN

)
(6.101)

The MD simulation of the extended system of the variables sample a microcanonical
ensemble with partition function given as

Ξ =
∞∑

N=0

1

N !hgN (6.102)

×
∫

dπs

∫
ds

∫
dpλ

∫ 1

0
dλ

∫
dp′

∫
dr

∫
dp′f

∫
drf

× δ

[
N∑

i=1

(p′i )2

2s2mi

+ (p′f )2

2s2mf

+ π2
s

2Q
+ p2

λ

2W

+ U(r)+ V (r : rf , λ)+ (gN + 1)kBT ln(s)+ θ(λ)− E
]

A relationship between this approximate partition function and the exact grand
canonical partition function can be obtained by first integrating over the thermostat
extension variables s and πs , following the procedures in Nosé (1984b,c) and Lynch
and Pettitt (1997), as described in the previous sections. This involves transforming
the momenta into real space using the relationships given by Eq. (6.97), and then
applying an equivalence relation for the Dirac delta function as explained in the
previous sections. The resulting partition function can then be rewritten as

Ξ =
∞∑

N=0

1

N !hgN
√

2πQkBT

(gN + 1)kBT
exp (E/kBT ) (6.103)

×
∫

dpλ

∫ 1

0
dλ

∫
dp

∫
dr

∫
dpf

∫
drf

× exp
(−Hλ

0 /kBT
)

exp (−Hλ/kBT )

where

Hλ
0 =

N∑

i=1

p2
i

2mi

+ p2
f

2mf

+ π2
s

2Q
+ U(r)+ V (r : rf , λ)

and

Hλ = p2
λ

2W
+ θ(λ)
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After, integrating according to pλ, we get:

Ξ =
∞∑

N=0

1

N !hgN
√

2πQkBT
√

2πWkBT

(gN + 1)kBT
exp (E/kBT ) (6.104)

×
∫ 1

0
dλ

∫
dp

∫
dr

∫
dpf

∫
drf

× exp
(−Hλ

0 /kBT
)

exp (−Hλ/kBT ) exp (−θ(λ)/kBT )

The reduced partition function, ΞN+λ, is defined by its relationship to the full
partition function,

Ξ =
∞∑

N=0

∫ 1

0
ΞN+λdλ

The ratio of the reduced partition function for the zero and one configurations is:

ΞN+1

ΞN

= exp [−θ(1)/kBT ]

exp [−θ(0)/kBT ]

ZN+1

Zid
N+1Z

ex
N

(6.105)

where Zid
N+1 and Zex

N are the kinetic and potential parts of the partition function. The
N + 1 term in the denominator is a direct result of not scaling the kinetic energy of
the fractional particle. Substitution of θ(1) and θ(0) into Eq. (6.105) gives

ΞN+1

ΞN

=
[

exp ((Ubias(1)− Ubias(0)) /kBT ) exp (μ/kBT )
ZN+1

ZN

]
(6.106)

which for Ubias(0) = Ubias(1) becomes

ΞN+1

ΞN

= Z(N+1)V T

ZNVT

exp(μ/kBT )

which is the grand canonical ratio. The bias potential, when calculating the ensemble
averages, does not need to be subtracted out, using for example weighted histogram
analysis method, as long as this last restriction is satisfied.

6.2.4.2 Nosé-Hoover Chain of Thermostats for Grand Canonical
Ensemble

The Hamiltonian function of the grand canonical ensemble using the chain of
thermostats approach is written as
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HGCE
NHC =

gN∑

i=1

[
(p′

i )
2

2s2
1,pi

mi

(6.107)

+
gN∑

i=1

Mp−1∑

j=1

π2
j,pi

2Qj,pi
s2
j+1,pi

+
π2
Mp,pi

2QMp,pi

⎤

⎦

+
d∑

i=1

⎡

⎣ (p′
fi
)2

2s2
1,fi

mfi

+
Mf−1∑

j=1

π2
j,fi

2Qj,fi s
2
j+1,fi

+
π2
Mf ,fi

2QMf ,fi

⎤

⎦

+
⎡

⎣ p2
λ

2s2
1,λW

+
Mλ−1∑

j=1

π2
j,λ

2Qj,λs
2
j+1,λ

+ π2
Mλ,λ

2QMλ,λ

⎤

⎦

+ U(r1, · · · , rN)+ V (r1, · · · , rN : rf , λ)+ θ(λ)

+
gN∑

i=1

Mp∑

j=1

kBT ln(sj,pi
)

+
d∑

i=1

Mf∑

j=1

kBT ln(sj,fi )

+
Mλ∑

j=1

kBT ln(sj,λ)

where gN is the number of degrees of freedom of the unperturbed system, d is the
dimension of the problem and M is the length of the chain of thermostats. Note that
we have used a massive chain of thermostats coupled to each degree of freedom of
the system, and we have used the same length for the chain of thermostats for both
the real and fractional particle. Now, we can use the Hamilton’s equations of motion
given in Chap. 1. Note that in the following equations, we are going to drop the
subscript i for the simplicity of the notation, which runs overall degrees of freedom
of the real particles, fractional particle and λ, respectively. Thus, we obtained the
following equations for each degree of freedom of the entire system:

dq

dτ1,p
= ∂HGCE

NHC

∂p′ = p′

s2
1,pm

(6.108)

dp′

dτ1,p
= −∂HGCE

NHC

∂q
= −∇qU(q)− f (λ)∇qu(q, qf )

dqf

dτ1,f
= ∂HGCE

NHC

∂p′
f

= p′
f

s2
1,f mf
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dp′
f

dτ1,f
= −∂HGCE

NHC

∂qf
= −f (λ)∇qf u(q, qf )

dλ

dτ1,λ
= ∂HGCE

NHC

∂pλ

= pλ

s2
1,λW

dpλ

dτλ
= −∂HGCE

NHC

∂λ
= −df (λ)

dλ
u(q, qf )− dθ(λ)

dλ

dπ1,p

dτ2,p
= −∂HGCE

NHC

∂s1,p
= (p′)2

s3
1,pm

− kBT

s1,p

ds1,p

dτ2,p
= ∂HGCE

NHC

∂π1,p
= π1,p

s2
2,pQs1,p

dπk,p

dτk+1,p
= −∂HGCE

NHC

∂sk,p
= π2

k−1,p

s3
k,pQk−1,p

− kBT

sk,p

dsk,p

dτk+1,p
= ∂HGCE

NHC

∂πsk,p

= πk,p

s2
k+1,pQk,p

k = 2, · · · , Mp − 1

dπMp,p

dτMp,p

= −∂HGCE
NHC

∂sMp,p

=
π2
Mp−1,p

s3
Mp,p

QMp−1,p
− kBT

sMp,p

dsMp,p

dτMp,p

= ∂HGCE
NHC

∂πMp,p

= πMp,p

QMp,p

dπ1,f

dτ2,f
= −∂HGCE

NHC

∂s1,f
= (p′

f )
2

s3
1,f mf

− kBT

s1,f

ds1,f

dτ2,f
= ∂HGCE

NHC

∂πs1,f

= π1,f

s2
2,f Q1,f

dπk,f

dτk+1,f
= −∂HGCE

NHC

∂sk,f
= π2

k−1,f

s3
k,fQk−1,f

− kBT

sk,f

dsk,f

dτk+1,f
= ∂HGCE

NHC

∂πk,f

= πk,f

s2
k+1,f Qk,f

k = 2, · · · , Mf − 1

dπMf ,f

dτMf ,f

= −∂HGCE
NHC

∂sMf ,f

=
π2
Mf−1,f

s3
Mf ,f

QMf−1,f
− kBT

sMf ,f
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dsMf ,f

dτMf ,f

= ∂HGCE
NHC

∂πMf ,f

= πMf ,f

QsMf ,f

dπ1,λ

dτ2,f
= −∂HGCE

NHC

∂s1,λ
= (pλ)

2

s3
1,λW

− kBT

s1,λ

ds1,λ

dτ2,λ
= ∂HGCE

NHC

∂π1,λ
= π1,λ

s2
2,λQ1,λ

dπk,λ

dτk+1,λ
= −∂HGCE

NHC

∂sk,λ
= π2

k−1,λ

s3
k,λQk−1,λ

− kBT

sk,λ

dsk,λ

dτk+1,λ
= ∂HGCE

NHC

∂πk,λ

= πk,λ

s2
k+1,λQk,λ

k = 2, · · · , Mλ − 1

dπMλ,λ

dτMλ,λ

= −∂HGCE
NHC

∂sMλ,λ

= π2
Mλ−1,λ

s3
Mλ,λ

QMλ−1,λ
− kBT

sMλ,λ

dsMλ,λ

dτMλ,λ

= ∂HGCE
NHC

∂πMλ,λ

= πMλ,λ

QMλ,λ

where

dτ1,p = s1,pdt (6.109)

dτk,p = sk−1,psk,pdt. (k = 2, · · · , Mp − 1)

dτMp,p = sMp,pdt

dτ1,f = s1,f dt

dτk,f = sk−1,f sk,f dt, (k = 2, · · · , Mf − 1)

dτ1,λ = s1,λdt

dτk,λ = sk−1,λsk,λdt, (k = 2, · · · , Mλ − 1)

dτMλ,λ = sMλ,λdt

with t being the real time. Substituting these transformations into Eq. (6.108), we
obtain:

dq

dt
= p′

s1,pm
(6.110)

dp′

dt
= −s1,p∇qU(q)− s1,pf (λ)∇qu(q, qf )
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dqf

dt
= p′

f

s1,f mf

dp′
f

dt
= −s1,f f (λ)∇qf u(q, qf )

dλ

dt
= pλ

s1,λW

dpλ

dt
= −s1,λ

df (λ)

dλ
u(q, qf )− s1,λ

dθ(λ)

dλ

dπ1,p

dt
= s2,p

(p′)2

s2
1,pm

− s2,pkBT

1

s1,p

ds1,p

dt
= π1,p

s2,pQ1,p

dπk,p

dt
= sk+1,p

π2
k−1,p

s2
k,pQk−1,p

− sk+1,pkBT

dsk,p

dt
= sk,p

πk,p

sk+1,pQk,p

k = 2, · · · , Mp − 1

dπMp,p

dt
= sMp,p

π2
Mp−1,p

s3
Mp,p

QMp−1,p
− sMp,p

kBT

sMp,p

dsMp,p

dt
= sMp,p

πMp,p

QMp,p

dπ1,f

dt
= s2,f

(p′
f )

2

s2
1,f mf

− s2,f kBT

1

s1,f

ds1,f

dt
= π1,f

s2,f Q1,f

dπk,f

dt
= sk+1,f

π2
k−1,f

s2
k,fQk−1,f

− sk+1,f kBT

dsk,f

dt
= sk,f

πk,f

sk+1,f Qk,f

k = 2, · · · , Mf − 1

dπMf ,f

dt
= sMf ,f

π2
Mf−1,f

s3
Mf ,f

QMf−1,f
− sMf ,f

kBT

sMf ,f
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dsMf ,f

dt
= sMf ,f

πMf ,f

QsMf ,f

dπ1,λ

dt
= s2,f

(pλ)
2

s2
1,λW

− s2,λkBT

1

s1,λ

ds1,λ

dt
= π1,λ

s2,λQ1,λ

dπk,λ

dt
= sk+1,λ

π2
k−1,λ

s2
k,λQk−1,λ

− sk+1,λkBT

dsk,λ

dt
= sk,λ

πk,λ

sk+1,λQk,λ

k = 2, · · · , Mλ − 1

dπMλ,λ

dt
= sMλ,λ

π2
Mλ−1,λ

s3
Mλ,λ

QMλ−1,λ
− sMλ,λ

kBT

sMλ,λ

dsMλ,λ

dt
= sMλ,λ

πMλ,λ

QMλ,λ

In the following, we propose some other transformations of the variables:

p = p′

s1,p
, pf = p′

f

s1,f
, πλ = pλ

s1,λ
(6.111)

π̂k,p = πk,p

sk,psk+1,p
, π̂k,f = πsk,f

sk,f sk+1,f
, π̂k,λ = πsk,λ

sk,λsk+1,λ

(k = 1, · · · , M − 1)

π̂M,p = πM,p

sM,p

, π̂M,f = πM,f

sM,f

, π̂M,λ = πM,λ

sM,λ

Substituting the transformations given by Eq. (6.111) into Eq. (6.110), we get:

dq

dt
= p

m
(6.112)

dp

dt
= −∇qU(q)− f (λ)∇qu(q, qf )− p

1

s1,p

ds1,p

dt

dqf

dt
= pf

mf

dpf

dt
= −f (λ)∇qf u(q, qf )− pf

1

s1,f

ds1,f

dt
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dλ

dt
= πλ

W

dπλ

dt
= −df (λ)

dλ
u(q, qf )− dθ(λ)

dλ
− πλ

1

s1,λ

ds1,λ

dt

dπ̂1,p

dt
= 1

s1,p

[
p2

m
− kBT

]
− π̂1,p

1

s1,p

ds1,p

dt
− π̂1,p

1

s2,p

ds2,p

dt

1

s1,p

ds1,p

dt
= s1,p

π̂1,p

Q1,p

dπ̂k,p

dt
= s2

k−1,p

π̂2
k−1,p

sk,pQk−1,p
− kBT

sk,p
− 1

sk,p

dsk,p

dt
− 1

sk+1,p

dsk+1,p

dt

1

sk,p

dsk,p

dt
= sk,p

π̂k,p

Qk,p

k = 2, · · · , Mp − 1

dπ̂Mp,p

dt
= s2

Mp−1,p

π̂2
Mp−1,p

sMp,pQMp−1,p
− kBT

sMp,p

− 1

sM,p

dsM,p

dt

1

sM,p

dsMp,p

dt
= sMp,p

π̂Mp,p

QMp,p

dπ̂1,f

dt
= 1

s1,f

[
p2
f

mf

− kBT

]
− π̂1,f

1

s1,f

ds1,f

dt
− π̂1,f

1

s2,f

ds2,f

dt

1

s1,f

ds1,f

dt
= s1,f

π̂1,f

Q1,f

dπ̂k,f

dt
= s2

k−1,f

π̂2
k−1,f

sk,fQk−1,f
− kBT

sk,f
− 1

sk,f

dsk,f

dt
− 1

sk+1,f

dsk+1,f

dt

1

sk,f

dsk,f

dt
= sk,f

π̂k,f

Qk,f

k = 2, · · · , Mf − 1

dπ̂Mf ,f

dt
= s2

Mf−1,f

π̂2
Mf−1,f

sMf ,fQMf−1,f
− kBT

sMf ,f

− 1

sM,f

dsM,f

dt

1

sM,f

dsMf ,f

dt
= sMf ,f

π̂Mf ,f

QMf ,f

dπ̂1,λ

dt
= 1

s1,λ

[
π2
λ

W
− kBT

]
− π̂1,λ

1

s1,λ

ds1,λ

dt
− π̂1,λ

1

s2,λ

ds2,λ

dt
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1

s1,λ

ds1,λ

dt
= s1,λ

π̂1,λ

Q1,λ

dπ̂k,λ

dt
= s2

k−1,λ

π̂2
k−1,λ

sk,λQk−1,λ
− kBT

sk,λ
− 1

sk,λ

dsk,λ

dt
− 1

sk+1,λ

dsk+1,λ

dt

1

sk,λ

dsk,λ

dt
= sk,λ

π̂k,λ

Qk,λ

k = 2, · · · , Mλ − 1

dπ̂Mλ,λ

dt
= s2

Mλ−1,λ

π̂2
Mλ−1,λ

sMλ,λQMλ−1,λ
− kBT

sMλ,λ

− 1

sM,λ

dsM,λ

dt

1

sM,λ

dsMλ,λ

dt
= sMλ,λ

π̂Mλ,λ

QMλ,λ

We can introduce another change in the variables of the following form:

πk,x = sk,xπ̂k,x, ηk,x = ln sk,x

where x = p, f, λ and k runs over the chain length. Then, Eq. (6.112) can be
written in the final form as follows:

dq

dt
= p

m
(6.113)

dp

dt
= −∇qU(q)− f (λ)∇qu(q, qf )− π1,p

Q1,p
p

dqf

dt
= pf

mf

dpf

dt
= −f (λ)∇qf u(q, qf )−

π1,f

Q1,f
pf

dλ

dt
= πλ

W

dπλ

dt
= −df (λ)

dλ
u(q, qf )− dθ(λ)

dλ
− π1,λ

Q1,λ
πλ

dπ1,p

dt
= p2

m
− kBT − π2,p

Q2,p
π1,p

dη1,p

dt
= π1,p

Q1,p

dπk,p

dt
= π2

k−1,p

Qk−1,p
− kBT − πk+1,p

Qk+1,p
πk,p
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dηk,p

dt
= πk,p

Qk,p

k = 2, · · · , Mp − 1

dπMp,p

dt
=

π2
Mp−1,p

sMp,pQMp−1,p
− kBT

dηMp,p

dt
= πMp,p

QMp,p

dπ1,f

dt
= p2

f

mf

− kBT − π2,f

Q2,f
π1,f

dη1,f

dt
= π1,f

Q1,f

dπk,f

dt
= π2

k−1,f

Qk−1,f
− kBT − πk+1,f

Qk+1,f
πk,f

dηk,f

dt
= πk,f

Qk,f

k = 2, · · · , Mf − 1

dπMf ,f

dt
=

π2
Mf−1,f

sMf ,fQMf−1,f
− kBT

dηMf ,f

dt
= πMf ,f

QMf ,f

dπ1,λ

dt
= π2

λ

W
− kBT − π2,λ

Q2,λ
π1,λ

dη1,λ

dt
= π1,λ

Q1,λ

dπk,λ

dt
= π2

k−1,λ

Qk−1,λ
− kBT − πk+1,λ

Qk+1,λ
πk,λ

dηk,λ

dt
= πk,λ

Qk,λ

k = 2, · · · , Mλ − 1

dπMλ,λ

dt
= π2

Mλ−1,λ

sMλ,λQMλ−1,λ
− kBT

dηMλ,λ

dt
= πMλ,λ

QMλ,λ
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Fig. 6.12 Illustration of the
creation and annihilation of a
particle in a typical grand
canonical ensemble
molecular dynamics
simulation

Example 7 As an illustration of the grand canonical ensemble molecular dynamics
simulation using a chain of thermostats, we considered a chain of particles coupled

through springs with force constant K = 317 kcal/mol/Å
2
, as shown in Fig. 6.12.

The potential interaction function is given as:

U(r1, · · · , rN) =
N−1∑

i=1

K (| ri+1 − ri | −x0)
2 (6.114)

where x0 = 1.523 Å. The interaction between the real particles and the fractional
particles is given by

V (r1, · · · , rN ; rf ) = f (λ)K
(| rN − rf | −x0

)2 (6.115)

Thus, the fractional particle is connected to the last real particle of the chain. Here,
f (λ) is the scaling function of λ given as

f (λ) = λ3

The potential function θ(λ) is given as

θ(λ) = − (N + h(λ)) (μex + μid)+ h(λ)μid

where

h(λ) = λ3
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and μid is given by

μid = −kBT ln

(
V

N + 1

(
mkBT

2πh̄2

)3/2
)

and μex is the excess chemical potential, μex = μ−μid , where μ is the equilibrium
chemical potential. In our simulations, whenever λ equalize one, the fractional
particle becomes a real particles, and hence N increases by one, and on the other
hand, when λ = 0, the last real particle of the chain becomes a fractional particle.
Each time that a fractional particle becomes a real one, a new fractional particle
is generated and a chain of thermostats coupled to the fractional particle is re-
initialized. Both when a particle is created or annihilated λ and the chain of
thermostat coupled to it are re-initialized. If the fractional particle becomes a real
particle, then its velocity is scaled as:

vN+1 = vf

√
mf

m

and when the real particle becomes a fractional particle, then

vf = vN+1

√
m

mf

In Fig. 6.13, we show the results of the grand canonical ensemble simulations
using a chain of thermostats for each degree of freedom in the system. The
thermostat chain length was M = 3. To calculate the block averages, we used
a block length of 2000 MD steps. The integration time step was Δt = 1 fs. We
used simulations with different excess chemical potentials as input. The equilibrium
temperature in all simulations was fixed at T = 600 K. The initial number of
particles was N = 8. In Fig. 6.13a, we show typical fluctuations of the excess
chemical potential (in cal/mol) for different runs with fixed μex and T . While in
Fig. 6.13c–e, we show fluctuations of the temperature for the real particles system,
fractional particle, and λ about the equilibrium temperature. Note that the real
particle mass was m = 1 amu, mf = 100 amu, and Wλ = 500 amu. The thermostat
masses where calculated as

Q = kBT τ 2

with τ = 0.001 ps.
Also, we calculated the average number of the particles as a function of the

excess chemical potential, shown in Fig. 6.13b along with the standard deviations
calculated using the block averages. Note that for μex = 12 cal/mol the curve chain
length versus μex exhibits a discontinuity, which, perhaps, represents a transition
from a folded to the unfolded state. This result is expectable since with increasing
the length of the sequence, the chain becomes more flexible.
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Fig. 6.13 Results of the grand canonical ensemble molecular dynamics simulation: (a) Fluctua-
tions of the excess chemical potential (in cal/mol); (b) The average length of the chain as a function
of excess chemical potential along with standard deviations calculated using block averages with
a block length of 2000 MD steps; (c), (d), and (e) Fluctuations of the temperature of real particles
system, fractional particle and λ, respectively. Different chains of thermostats are coupled to each
degree of freedom of the entire system with a chain length of M = 3

6.2.5 Grand Isothermal-Isobaric Ensemble

Now, we are going to formulate the equations of motion in a grand isothermal-
isobaric ensemble in which μ, p and T are fixed using the Nosé-Hoover formalism.

The following discussion introduces two approaches, namely the Nosé-Andersen
thermostat and Nosé-Andersen chain of thermostats approach to control the temper-
ature (T ) and pressure (p). Besides, to control the chemical potential (μ) we are
again going to employ the above formalism.

6.2.5.1 Nosé-Andersen Thermostats for Grand Isothermal-Isobaric
Ensemble

We will suppose that a thermostat with variable (s, π ) is coupled to each degree of
freedom of the system, namely real particles of the system, fractional particle, λ-
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parameter, and barostat. Consider we have a N -particles system interacting via the
potential energy function U(r1, r2, · · · , rN). The Hamiltonian function for this
system will be written as follows:

HGIIE
NA =

gN∑

i=1

[
(p′

i )
2

2s2
p,iV

2/dmi

+ π2
sp,i

2Qsp,i

+ kBT ln sp,i

]
(6.116)

+
d∑

i=1

[
(p′

f,i)
2

2s2
f,iV

2/dmf,i

+ π2
sf,i

2Qsf,i

+ kBT ln sf,i

]

+ p2
λ

2s2
λWλ

+ π2
sλ

2Qsλ

+ kBT ln sλ

+ U(q ′1, q ′2, · · · , q ′gN )
+ U ′(q ′1, q ′2, · · · , q ′gN : q ′f,1 · · · , q ′f,d , λ)
+ θ(λ)

+ p2
V

2s2
bWv

+ pV + π2
sb

2s2
bQb

+ kBT ln sb

where the subscript i, running overall degrees of freedom, is omitted for simplicity
of appearance. The parameters have the same meaning as previously stated and

q ′i = V 1/dqi, q ′f,i = V 1/dqf,i (6.117)

In addition, we have introduced a fictitious particle associated with the fluctuations
of the volume with mass Wv . Note that we have introduced a thermostat to each
degree of freedom of the extended variables system. Using the Hamilton’s equations
as described in Chap. 1, we obtain:

dq ′

dτp
= p′

s2
pV

2/dm
(6.118)

dp′

dτp
= −V 1/d∇qU(q ′)− V 1/df (λ)∇qu(q

′, q ′f )

dsp

dτp
= πsp

Qp

dπsp

dτp
= (p′)2

s3
pV

2/dm
− kBT

sp

dq ′f
dτf

= p′
f

s2
f V

2/dmf
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dp′
f

dτf
= −V 1/df (λ)∇qf u(q

′, q ′f )

dsf

dτf
= πsf

Qf

dπsf

dτf
= (p′

f )
2

s3
f V

2/dmf

− kBT

sf

dq ′λ
dτλ

= p′
λ

s2
λWλ

dp′
λ

dτλ
= −df (λ)

dλ
u(q ′, q ′f )−

dθ(λ)

dλ

dsλ

dτλ
= πsλ

Qλ

dπsλ

dτλ
= (p′

λ)
2

s3
λWλ

− kBT

sλ

dV

dτb
= pV

s2
bWv

dpV

dτb
= P − p0

dsb

dτb
= πsb

Qb

dπsb

dτb
= (pV )

2

s3
bWv

− kBT

sb

where P is the instantaneous pressure, which is given as:

P = 1

V d

(
gN∑

i=1

p2
i

mi

+
d∑

i=1

p2
f,i

mf,i

(6.119)

+
gN∑

i=1

[− (∇qiU
)
qi −

(∇qiU
′) qi

]− (V d)
∂U

∂V
− (V d)

∂U ′

∂V

)

where explicit dependence on the volume is assumed for both U and U ′.
The relationships between the real time t and the scaled time for each degree of

freedom are given as follows:

dτp = spdt, dτf = sf dt, dτλ = sλdt, dτb = sbdt (6.120)
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where t is the real time. Substituting the transformations given by Eqs. (6.117)
and (6.120) into Eq. (6.118), we obtain the equations of motion with respect to the
real time t as follows:

dq

dt
= p′

spV 1/dm
+ 1

V d

dV

dt
q (6.121)

dp′

dt
= −spV

1/d∇qU(q ′)− spV
1/df (λ)∇qu(q

′, q ′f )

dsp

dt
= sp

πsp

Qp

dπsp

dt
= (p′)2

s2
pV

2/dm
− kBT

dqf

dt
= p′

f

sf V 1/dmf

+ 1

V d

dV

dt
qf

dp′
f

dt
= −sf V

1/df (λ)∇qf u(q
′, q ′f )

dsf

dt
= sf

πsf

Qf

dπsf

dt
= (p′

f )
2

s2
f V

2/dmf

− kBT

dqλ

dt
= p′

λ

sλWλ

dp′
λ

dt
= −sλ

df (λ)

dλ
u(q ′, q ′f )− sλ

dθ(λ)

dλ

dsλ

dt
= sλ

πsλ

Qλ

dπsλ

dt
= (p′

λ)
2

s2
λWλ

− kBT

dV

dt
= pV

sbWv

dpV

dt
= sb(P − p0)

dsb

dt
= sb

πsb

Qb
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dπsb

dt
= (pV )

2

s2
bWv

− kBT

Introducing the following changes of the variables

p = p′

spV 1/d , pf = p′
f

sf V 1/d , pλ = p′
λ

sλ
, πV = pV

sb
(6.122)

π̂p = πp

sp
, π̂f = πf

sf
, π̂λ = πλ

sλ
, π̂b = πb

sb

we obtain these equations of motion with respect to the new variables and the real
time:

dq

dt
= p

m
+ 1

V d

dV

dt
q (6.123)

dp

dt
= −∇qU(q)− f (λ)∇qu(q, qf )− 1

V d

dV

dt
p − 1

sp

dsp

dt
p

dsp

dt
= s2

p

π̂sp

Qp

dπ̂sp

dt
= 1

sp

p2

m
− kBT

sp
− 1

sp

dsp

dt
π̂sp

dqf

dt
= pf

mf

+ 1

V d

dV

dt
qf

dpf

dt
= −f (λ)∇qf u(q, qf )−

1

V d

dV

dt
pf − 1

sf

dsf

dt
pf

dsf

dt
= s2

f

π̂sf

Qf

dπ̂sf

dt
= 1

sf

p2
f

mf

− kBT

sf
− 1

sf

dsf

dt
π̂sf

dqλ

dt
= pλ

Wλ

dpλ

dt
= −df (λ)

dλ
u(q, qf )− dθ(λ)

dλ
− 1

sλ

dsλ

dt
pλ

dsλ

dt
= s2

λ

π̂sλ

Qλ

dπ̂sλ

dt
= 1

sλ

p2
λ

Wλ

− kBT

sλ
− 1

sλ

dsλ

dt
π̂sλ
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dV

dt
= πV

Wv

dπV

dt
= P − p0 − 1

sb

dsb

dt
πV

dsb

dt
= s2

b

π̂sb

Qb

dπ̂sb

dt
= π2

V

Wv

− kBT

sb
− 1

sb

dsb

dt
π̂sb

Another transformation of the variables is suggested:

πηp = spπ̂sp , ηp = ln sp (6.124)

πηf = sf π̂sf , ηf = ln sf

πηλ = sλπ̂sλ , ηλ = ln sλ

πηb = sbπ̂sb , ηb = ln sb

ε = 1

d
lnV, πε = πV

d

Substituting transformations of type in Eq. (6.124) into Eq. (6.123), we obtain:

dq

dt
= p

m
+ πε

Wv

q (6.125)

dp

dt
= −∇qU(q)− f (λ)∇qu(q, qf )− πε

Wv

p − πηp

Qp

p

dηp

dt
= πηp

Qp

dπηp

dt
= p2

m
− kBT

dqf

dt
= pf

mf

+ πε

Wv

qf

dpf

dt
= −f (λ)∇qf u(q, qf )−

πε

Wv

pf − πηf

Qf

pf

dηf

dt
= πηf

Qf

dπηf

dt
= p2

f

mf

− kBT
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dqλ

dt
= pλ

Wλ

dpλ

dt
= −df (λ)

dλ
u(q, qf )− dθ(λ)

dλ
− πηλ

Qλ

pλ

dηλ

dt
= πηλ

Qλ

dπηλ

dt
= p2

λ

Wλ

− kBT

dε

dt
= πε

Wv

dπε

dt
= V d (P − p0)− πηb

Qb

πε

dηb

dt
= πηb

Qb

dπηb

dt
= π2

ε

Wv

− kBT

It is straightforward to show that the extended system of equations of the
variables samples microcanonical ensemble with a partition function given as:

ΣμpT =
∞∑

N=0

ZNpT exp (βμN) (6.126)

=
∞∑

N=0

1

N !hgN

×
[

gN∏

i=1

∫
dπsp,i

∫
dsp,i

∫
dp′

i

∫
dq ′i

]

×
[

d∏

i=1

∫
dπsf,i

∫
dsf,i

∫
dp′

f,i

∫
dq ′f,i

]

×
∫

dπsλ

∫
dsλ

∫
dp′

λ

∫
dλ

×
∫

dπsb

∫
dsb

∫
dpV

∫
dV

× δ

{
gN∑

i=1

[
(p′

i )
2

2s2
p,iV

2/dmi

+ π2
sp,i

2Qsp,i

+ kBT ln sp,i

]
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+
d∑

i=1

[
(p′

f,i)
2

2s2
f,iV

2/dmf,i

+ π2
sf,i

2Qsf,i

+ kBT ln sf,i

]

+ p2
λ

2s2
λWλ

+ π2
sλ

2Qsλ

+ kBT ln sλ

+ U(q ′1, q ′2, · · · , q ′gN )
+ U ′(q ′1, q ′2, · · · , q ′gN : q ′f,1 · · · , q ′f,d , λ)+ θ(λ)

+ p2
V

2s2
bWv

+ pV + π2
sb

2s2
bQb

+ kBT ln sb − E

}

We can integrate the extended variable dynamics and apply the variable transforma-
tions as shown above, to get:

ΣμpT =
∞∑

N=0

1

N !hgN
1

(gN + d + 2)kBT
(6.127)

×
gN∏

i=1

[
2πQp,ikBT

]1/2
d∏

i=1

[
2πQf,ikBT

]1/2

× [2πQλkBT ]1/2 [2πQbkBT ]1/2 exp (E/kBT )

×
[

gN∏

i=1

∫
dpi

∫
dqi

][
d∏

i=1

∫
dpf,i

∫
dqf,i

]

×
∫

dpλ

∫
dλ

∫
dπε

∫
dV

× exp
(−H0,λ/kBT

)
exp (−Hλ/kBT )

where

H0,λ =
gN∑

i=1

p2
i

2mi

+
d∑

i=1

p2
f,i

2mf,i

(6.128)

+ U(q ′1, q ′2, · · · , q ′gN )
+ U ′(q ′1, q ′2, · · · , q ′gN : q ′f,1 · · · , q ′f,d , λ)

+ π2
ε

2Wv

+ pV

and
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Hλ = p2
λ

2Wλ

+ θ(λ) (6.129)

This indicates that a grand isothermal-isobaric ensemble is generated.

6.2.5.2 Nosé-Andersen Chain of Thermostats for Grand
Isothermal-Isobaric Ensemble

For the Nosé-Andersen chain of thermostats grand isothermal-isobaric ensemble the
Hamiltonian function is proposed as follows:

HGIIE
NAC =

gN∑

i=1

[
(p′

i )
2

2s2
p1,i

V 2/dmi

(6.130)

+
M−1∑

j=1

π2
pj ,i

2s2
pj+1,i

Qpj ,i

+ π2
pM,i

2QpM,i

+
M∑

j=1

kBT ln spj ,i

⎤

⎦

+
d∑

i=1

[
(p′

f,i)
2

2s2
f1,i

V 2/dmf,i

+
M−1∑

j=1

π2
fj ,i

2s2
fj+1,i

Qfj ,i

+ π2
fM,i

2QfM,i

+
M∑

j=1

kBT ln sfj ,i

⎤

⎦

+ p2
λ

2s2
λ1
Wλ

+
M−1∑

j=1

π2
λj

2s2
λj+1

Qλj

+ π2
λM

2QλM

+
M∑

j=1

kBT ln sλj

+ p2
v

2s2
b1
Wv

+
M−1∑

j=1

π2
bj

2s2
bj+1

Qbj

+ π2
bM

2QbM

+
M∑

j=1

kBT ln sbj

+ U(q ′1, q ′2, · · · , q ′gN )
+ U ′(q ′1, q ′2, · · · , q ′gN : q ′f,1 · · · , q ′f,d , λ)
+ θ(λ)+ pV
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where for the simplicity of the appearance, it is assumed the same length of the
chain for each degree of the freedom. However, in practice, different length of the
chain of the thermostats can be considered. Besides, in the following, we are going
to drop off the subscript i and use the Hamilton’s equations of motion introduced in
Chap. 1, and we can obtain the equations of motion as follows:

dq ′

dτp1

= p′

s2
p1
V 2/dm

(6.131)

dp′

dτp1

= −V 1/d∇qU(q)− V 1/df (λ)∇qu(q, qf )

dsp1

dτp2

= πp1

s2
p2
Qp1

dπp1

dτp2

= (p′)2

s3
p1
V 2/dm

− kBT

sp1

dspk

dτpk+1

= πpk

s2
pk+1

Qpk

dπpk

dτpk+1

= π2
pk−1

s3
pk
Qpk−1

− kBT

spk

, k = 2, · · · ,M − 1

dspM

dτpM

= πpM

QpM

dπpM

dτpM

= π2
pM−1

s3
pM

QpM−1

− kBT

spM

dq ′f
dτf1

= p′
f

s2
f1
V 2/dmf

dp′
f

dτf1

= −V 1/df (λ)∇qf u(q, qf )

dsf1

dτf2

= πf1

s2
f2
Qf1

dπf1

dτf2

= (p′
f )

2

s3
f1
V 2/dmf

− kBT

sf1

dsfk

dτfk+1

= πfk

s2
fk+1

Qfk
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dπfk

dτfk+1

= π2
fk−1

s3
fk
Qfk−1

− kBT

sfk
, k = 2, · · · ,M − 1

dsfM

dτfM
= πfM

QfM

dπfM

dτfM
= π2

fM−1

s3
fM

QfM−1

− kBT

sfM

dλ

dτλ1

= pλ

s2
λ1
Wλ

dpλ

dτλ1

= −df (λ)

dλ
u(q, qf )− dθ(λ)

dλ

dsλ1

dτλ2

= πλ1

s2
λ2
Qλ1

dπλ1

dτλ2

= p2
λ

s3
λ1
Wλ

− kBT

sλ1

dsλk

dτλk+1

= πλk

s2
λk+1

Qλk

dπλk

dτλk+1

= π2
λk−1

s3
λk
Qλk−1

− kBT

sλk
, k = 2, · · · ,M − 1

dsλM

dτλM
= πλM

QλM

dπλM

dτλM
= π2

λM−1

s3
λM

QλM−1

− kBT

sλM

dV

dτb1

= pv

s2
b1
Wv

dpv

dτb1

= P − p0

dsb1

dτb2

= πb1

s2
b2
Qb1

dπb1

dτb2

= p2
v

s3
b1
Wv

− kBT

sb1

dsbk

dτbk+1

= πbk

s2
bk+1

Qbk
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dπbk

dτbk+1

= π2
bk−1

s3
bk
Qbk−1

− kBT

sbk
, k = 2, · · · ,M − 1

dsbM

dτbM
= πbM

QbM

dπbM

dτbM
= π2

bM−1

s3
bM

QbM−1

− kBT

sbM

where the relationships between the scaled times and the real time t are given as
follows:

dτp1 = sp1dt (6.132)

dτpk
= spk−1spk

dt, (k = 2, · · · , M − 1)

dτpM
= spM

dt

dτf1 = sf1dt

dτfk = sfk−1sfkdt, (k = 2, · · · , M − 1)

dτλ1 = sλ1dt

dτλk = sλk−1sλkdt, (k = 2, · · · , M − 1)

dτλM = sλM dt

dτb1 = sb1dt

dτbk = sbk−1sbkdt, (k = 2, · · · , M − 1)

dτbM = sbM dt

Substituting these transformations and the relationships given by Eq. (6.117) into
Eq. (6.131), we obtain:

dq

dt
= p′

sp1V
1/dm

+ 1

V d

dV

dt
q (6.133)

dp′

dt
= −sp1V

1/d∇qU(q)− sp1V
1/df (λ)∇qu(q, qf )

dsp1

dt
= sp1

πp1

sp2Qp1

dπp1

dt
= sp2

(p′)2

s2
p1
V 2/dm

− sp2kBT

dspk

dt
= spk

πpk

spk+1Qpk
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dπpk

dt
= spk+1

π2
pk−1

s2
pk
Qpk−1

− spk+1kBT , k = 2, · · · ,M − 1

dspM

dt
= spM

πpM

QpM

dπpM

dt
= π2

pM−1

s2
pM

QpM−1

− kBT

dqf

dt
= p′

f

sf1V
1/dmf

+ 1

V d

dV

dt
qf

dp′
f

dt
= −sf1V

1/df (λ)∇qf u(q, qf )

dsf1

dt
= sf1

πf1

sf2Qf1

dπf1

dt
= sf2

(p′
f )

2

s2
f1
V 2/dm

− sf2kBT

dsfk

dt
= sfk

πfk

sfk+1Qfk

dπfk

dt
= sfk+1

π2
fk−1

s2
fk
Qfk−1

− sfk+1kBT , k = 2, · · · ,M − 1

dsfM

dt
= sfM

πfM

QfM

dπfM

dt
= π2

fM−1

s2
fM

QfM−1

− kBT

dλ

dt
= pλ

sλ1Wλ

dpλ

dt
= −sλ1

df (λ)

dλ
u(q, qf )− sλ1

dθ(λ)

dλ

dsλ1

dt
= sλ1

πλ1

sλ2Qλ1

dπλ1

dt
= sλ2

p2
λ

s2
λ1
Wλ

− sλ2kBT

dsλk

dt
= sλk

πλk

sλk+1Qλk
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dπλk

dt
= sλk+1

π2
λk−1

s2
λk
Qλk−1

− sλk+1kBT , k = 2, · · · ,M − 1

dsλM

dt
= sλM

πλM

QλM

dπλM

dt
= π2

λM−1

s2
λM

QλM−1

− kBT

dV

dt
= pv

sb1Wv

dpv

dt
= sb1 (P − p0)

dsb1

dt
= sb1

πb1

sb2Qb1

dπb1

dt
= sb2

p2
v

s2
b1
Wv

− sb2kBT

dsbk

dt
= sbk

πbk

sbk+1Qbk

dπbk

dt
= sbk+1

π2
bk−1

s2
bk
Qbk−1

− sbk+1kBT , k = 2, · · · ,M − 1

dsbM

dt
= sbM

πbM

QbM

dπbM

dt
= π2

bM−1

s2
bM

QbM−1

− kBT

In the following, we propose some additional transformations of the variables:

p = p′

sp1V
1/d , pf = p′

f

sf1V
1/d , π̂ = pv

sb1

, πλ = pλ

sλ1

(6.134)

π̂bk =
πbk

sbk sbk+1

, π̂pk
= πpk

spk
spk+1

, π̂fk =
πsfk

sfk sfk+1

, π̂λk =
πsλk

sλk sλk+1

(k = 1, · · · , M − 1)

π̂bM = πbM

sbM
, π̂pM

= πpM

spM

, π̂fM = πfM

sfM
, π̂λM = πλM

sλM

Substituting the transformation given by Eq. (6.134) into Eq. (6.133), we obtain:
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dq

dt
= p

m
+ 1

V d

dV

dt
q (6.135)

dp

dt
= −∇qU(q)− f (λ)∇qu(q, qf )− 1

V d

dV

dt
p − 1

sp1

dsp1

dt
p

dsp1

dt
= s2

p1

π̂p1

Qp1

dπ̂p1

dt
= 1

sp1

p2

m
− kBT

sp1

− 1

sp2

dsp2

dt
π̂p1 −

1

sp1

dsp1

dt
π̂p1

dspk

dt
= s2

pk

π̂pk

Qpk

dπ̂pk

dt
= s2

pk−1

π̂2
pk−1

spk
Qpk−1

− kBT

spk

− 1

spk+1

dspk+1

dt
π̂pk

− 1

spk

dspk

dt
π̂pk

k = 2, · · · ,M − 1

dspM

dt
= s2

pM

π̂pM

QpM

dπ̂pM

dt
= s2

pM−1

π̂2
pM−1

spM
QpM−1

− kBT

spM

− 1

spM

dspM

dt
π̂pM

dqf

dt
= pf

mf

+ 1

V d

dV

dt
qf

dpf

dt
= −f (λ)∇qf u(q, qf )−

1

V d

dV

dt
pf − 1

sf1

dsf1

dt
pf

dsf1

dt
= s2

f1

π̂f1

Qf1

dπ̂f1

dt
= 1

sf1

p2
f

mf

− kBT

sf1

− 1

sf2

dsf2

dt
π̂f1 −

1

sf1

dsf1

dt
π̂f1

dsfk

dt
= s2

fk

π̂fk

Qfk

dπ̂fk

dt
= s2

fk−1

π̂2
fk−1

sfkQfk−1

− kBT

sfk
− 1

sfk+1

dsfk+1

dt
π̂fk −

1

sfk

dsfk

dt
π̂fk

k = 2, · · · ,M − 1

dsfM

dt
= s2

fM

π̂fM

QfM
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dπ̂fM

dt
= s2

fM−1

π̂2
fM−1

sfMQfM−1

− kBT

sfM
− 1

sfM

dsfM

dt
π̂fM

dλ

dt
= πλ

Wλ

dπλ

dt
= −df (λ)

dλ
u(q, qf )− dθ(λ)

dλ
− 1

sλ1

dsλ1

dt
πλ

dsλ1

dt
= s2

λ1

π̂λ1

Qλ1

dπ̂λ1

dt
= 1

sλ1

p2
λ

Wλ

− kBT

sλ1

− 1

sλ2

dsλ2

dt
π̂λ1 −

1

sλ1

dsλ1

dt
π̂λ1

dsλk

dt
= s2

λk

π̂λk

Qλk

dπ̂λk

dt
= s2

λk−1

π̂2
λk−1

sλkQλk−1

− kBT

sλk
− 1

sλk+1

dsλk+1

dt
π̂λk −

1

sλk

dsλk

dt
π̂λk

k = 2, · · · ,M − 1

dsλM

dt
= s2

λM

π̂λM

QλM

dπ̂λM

dt
= s2

λM−1

π̂2
λM−1

sλMQλM−1

− kBT

sλM
− 1

sλM

dsλM

dt
π̂λM

dV

dt
= π̂v

Wv

dπ̂v

dt
= (P − p0)− 1

sb1

dsb1

dt
πv

dsb1

dt
= s2

b1

π̂b1

Qb1

dπ̂b1

dt
= 1

sb1

π̂2
v

Wv

− kBT

sb1

− 1

sb2

dsb2

dt
π̂b1 −

1

sb1

dsb1

dt
π̂b1

dsbk

dt
= s2

bk

π̂bk

Qbk

dπ̂bk

dt
= s2

bk−1

π̂2
bk−1

sbkQbk−1

− kBT

sbk
− 1

sbk+1

dsbk+1

dt
π̂bk −

1

sbk

dsbk

dt
π̂bk

k = 2, · · · ,M − 1
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dsbM

dt
= s2

bM

π̂bM

QbM

dπ̂bM

dt
= s2

bM−1

π̂2
bM−1

sbMQbM−1

− kBT

sbM
− 1

sbM

dsbM

dt
π̂bM

Another change in the variables is introduced as:

πxk = sxk π̂xk , ηxk = ln sxk (6.136)

ε = 1

d
lnV, πε = π̂v

d

where x = p, f, λ, b and k = 1, 2, · · · , M . Then, substituting these transforma-
tions in Eq. (6.135), we can the final form of the equations of motion for the grand
isothermal-isobaric ensemble as follows:

dq

dt
= p

m
+ πε

Wv

q (6.137)

dp

dt
= −∇qU(q)− f (λ)∇qu(q, qf )− πε

Wv

p − πp1

Qp1

p

dηp1

dt
= πp1

Qp1

dπp1

dt
= p2

m
− kBT − πp2

Qp2

πp1

dηpk

dt
= πpk

Qpk

dπpk

dt
= π2

pk−1

Qpk−1

− kBT − πpk+1

Qpk+1

πpk

k = 2, · · · ,M − 1

dηpM

dt
= πpM

QpM

dπpM

dt
= π2

pM−1

QpM−1

− kBT

dqf

dt
= pf

mf

+ πε

Wv

qf

dpf

dt
= −f (λ)∇qf u(q, qf )−

πε

Wv

pf − πf1

Qf1

pf
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dηf1

dt
= πf1

Qf1

dπf1

dt
= p2

f

mf

− kBT − πf2

Qf2

πf1

dηfk

dt
= πfk

Qfk

dπfk

dt
= π2

fk−1

Qfk−1

− kBT − πfk+1

Qfk+1

πfk

k = 2, · · · ,M − 1

dηfM

dt
= πfM

QfM

dπfM

dt
= π2

fM−1

QfM−1

− kBT

dλ

dt
= πλ

Wλ

dπλ

dt
= −df (λ)

dλ
u(q, qf )− dθ(λ)

dλ
− πλ1

Qλ1

pλ

dηλ1

dt
= πλ1

Qλ1

dπλ1

dt
= π2

λ

Wλ

− kBT − πλ2

Qλ2

πλ1

dηλk

dt
= πλk

Qλk

dπλk

dt
= π2

λk−1

Qλk−1

− kBT − πλk+1

Qλk+1

πλk

k = 2, · · · ,M − 1

dηλM

dt
= πλM

QλM

dπλM

dt
= π2

λM−1

QλM−1

− kBT

dε

dt
= πε

Wv
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dπε

dt
= V d (P − p0)− πb1

Qb1

πε

dηb1

dt
= πb1

Qb1

dπb1

dt
= π2

ε

Wv

− kBT − πb2

Qb2

πb1

dηbk

dt
= πbk

Qbk

dπbk

dt
= π2

bk−1

Qbk−1

− kBT − πbk+1

Qbk+1

πbk

k = 2, · · · ,M − 1

dηbM

dt
= πbM

QbM

dπbM

dt
= π2

bM−1

QbM−1

− kBT

To produce the grand isothermal-isobaric ensemble distribution, the following
changes are proposed for each degree of freedom i (for i = 1, 2, · · · , gN ):

dqi

dt
= pi

mi

+ πε

Wv

qi (6.138)

dpi

dt
= −∇qiU(q)− f (λ)∇qi u(q, qf )−

(
1 + d

gN

)
πε

Wv

pi − πp1

Qp1

pi

dηp1

dt
= πp1

Qp1

dπp1

dt
= p2

i

mi

− kBT − πp2

Qp2

πp1

dηpk

dt
= πpk

Qpk

dπpk

dt
= π2

pk−1

Qpk−1

− kBT − πpk+1

Qpk+1

πpk

k = 2, · · · ,M − 1

dηpM

dt
= πpM

QpM
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dπpM

dt
= π2

pM−1

QpM−1

− kBT

dqf

dt
= pf

mf

+ πε

Wv

qf

dpf

dt
= −f (λ)∇qf u(q, qf )−

(
1 + d

gN

)
πε

Wv

pf − πf1

Qf1

pf

dηf1

dt
= πf1

Qf1

dπf1

dt
= p2

f

mf

− kBT − πf2

Qf2

πf1

dηfk

dt
= πfk

Qfk

dπfk

dt
= π2

fk−1

Qfk−1

− kBT − πfk+1

Qfk+1

πfk

k = 2, · · · ,M − 1

dηfM

dt
= πfM

QfM

dπfM

dt
= π2

fM−1

QfM−1

− kBT

dλ

dt
= πλ

Wλ

dπλ

dt
= −df (λ)

dλ
u(q, qf )− dθ(λ)

dλ
− πλ1

Qλ1

pλ

dηλ1

dt
= πλ1

Qλ1

dπλ1

dt
= π2

λ

Wλ

− kBT − πλ2

Qλ2

πλ1

dηλk

dt
= πλk

Qλk

dπλk

dt
= π2

λk−1

Qλk−1

− kBT − πλk+1

Qλk+1

πλk

k = 2, · · · ,M − 1
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dηλM

dt
= πλM

QλM

dπλM

dt
= π2

λM−1

QλM−1

− kBT

dε

dt
= πε

Wv

dπε

dt
= V d (P − p0)+ d

gN

gN∑

i=1

p2
i

mi

− πb1

Qb1

πε

dηb1

dt
= πb1

Qb1

dπb1

dt
= π2

ε

Wv

− kBT − πb2

Qb2

πb1

dηbk

dt
= πbk

Qbk

dπbk

dt
= π2

bk−1

Qbk−1

− kBT − πbk+1

Qbk+1

πbk

k = 2, · · · ,M − 1

dηbM

dt
= πbM

QbM

dπbM

dt
= π2

bM−1

QbM−1

− kBT

6.2.6 Generalized Ensemble

Consider an arbitrary function F(q,p), which satisfies the conditions of a probabil-
ity density function in the phase space characterized by the points (q,p):

∫

Γ

dpdqF(q,p) = 1 (6.139)

F(q,p) = 1

According to Plastino and Anteneodo (1997) and Barth et al. (2003), a canonical
probability density function is related to the effective Hamiltonian Heff as follows:

F(q,p) = exp (−βHeff)
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It is straightforward to obtain that

Heff = − 1

β
lnF(q,p) (6.140)

The canonical ensemble sampling with the new Hamiltonian Heff is equivalent
to sampling according to the generalized probability density F . Then, the Nosé
Hamiltonian, introduced above, can be re-written as

HF
N = − 1

β
lnF(q,p′/s)+ π2

2Q
+ (gN + 1)kBT ln(s) (6.141)

Using the Hamiltonian equations of motion and the variable transformations
introduced by Hoover as discussed in the previous section, it is found that Nosé-
Hoover generalized ensemble equations of motion are given by (Barth et al. 2003):

q̇ = − kBT

F(q,p)
∇pF(q,p) (6.142)

ṗ = kBT

F(q,p)
∇qF(q,p)− πη

Q
p

η̇ = πη

Q

π̇η = − kBT

F(q,p)
pT∇pF(q,p)− gNkBT

In addition, the Nosé Hamiltonian coupled to a chain of thermostats using the
effective Hamiltonian is:

HF
NC = − 1

β
lnF(q,p′/s1)+

M−1∑

i=1

π2
i

2Qis
2
i+1

(6.143)

+ π2
M

2QM

+ gNkBT ln(s1)+
M∑

i=2

kBT ln si

Then, the equations of motion using the Nosé-Hoover chain of thermostats
variables for the generalized ensemble can be written as

q̇ = − kBT

F(q,p)
∇pF(q,p) (6.144)

ṗ = kBT

F(q,p)
∇qF(q,p)− πη1

Q1
p
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η̇k = πηk

Qk

, k = 1, · · · ,M

π̇η1 = − kBT

F(q,p)
pT∇pF(q,p)− gNkBT − πη1πη2/Q2

π̇ηk =
π2
ηk−1

Qk−1
− kBT − πηkπηk+1/Qk+1, k = 2, · · · ,M − 1

π̇ηM = π2
ηM−1

QM−1
− kBT

In the case of the Nosé-Poincaré transformation, the Hamiltonian for the
generalized ensemble can be re-written as

HF
NP = s

[
− 1

β
lnF(q,p′/s)+ π2

2Q
+ (gN + 1)kBT ln(s)

]
(6.145)

We can similarly find the equations of motion for the Nosé-Poincaré generalized
ensemble as (Barth et al. 2003)

q̇ = − kBT

F(q,p′/s)
∇p′/sF (q,p′/s) (6.146)

ṗ′ = kBT

F(q,p′/s)
∇qF(q,p′/s)

ṡ = s
π

Q

π̇ = kBT

sF (q,p′/s)
∇p′/sF (q,p′/s)− gNkBT −ΔHF

N

As mentioned in Barth et al. (2003), the above equations of motion do not
prove a separation of the variables that exist in the original form of either the
Nosé-Hoover or Nosé-Poincaré equations of motion. Therefore, application of the
time reversible schemes yields the nonlinear equations of motion, the solution of
each at each time step would require too many calls of the potential energy and
forces calculations. That is computationally very expensive. Therefore, two cases
of the generalized probability density functions have been proposed (Barth et al.
2003): Separable variable distribution functions and function of the Hamiltonian
distribution functions.

6.2.6.1 Separable Distribution Functions

In this case, the generalized probability density function is factorized as (Barth et al.
2003)
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F(q,p) = A(p)B(q)

The effective kinetic and potential energies are defined as the following:

F(q,p) = exp (−βKeff) exp (−βUeff)

we get

Keff(p) = − 1

β
lnA(p) (6.147)

Ueff(q) = − 1

β
lnB(q)

Then, the effective Hamiltonian is

Heff = Keff + Ueff

The Nosé-Hoover generalized ensemble equations of motion can be re-written
as (Barth et al. 2003):

q̇ = ∇pKeff(p) (6.148)

ṗ = −∇qUeff(q)− πη

Q
p

η̇ = πη

Q

π̇η = − kBT

F(q,p)
pT∇pF(q,p)− gNkBT

The equations of motion for the Nosé-Hoover chain of thermostats using the
generalized ensemble can be re-written as

q̇ = ∇pKeff(p) (6.149)

ṗ = −∇qUeff(q)− πη1

Q1
p

η̇k = πηk

Qk

, k = 1, · · · ,M

π̇η1 = − kBT

F(q,p)
pT∇pF(q,p)− gNkBT − πη1πη2/Q2

π̇ηk =
π2
ηk−1

Qk−1
− kBT − πηkπηk+1/Qk+1, k = 2, · · · ,M − 1
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π̇ηM = π2
ηM−1

QM−1
− kBT

The Nosé-Poincaré equations of motion for this generalized distribution function
follow similarly:

q̇ = ∇p′/sKeff(p′/s) (6.150)

ṗ′ = −∇qUeff(q)

ṡ = s
π

Q

π̇ = −∇p′Keff(p′/s)− gNkBT −ΔHF
N

Some applications of generalized density for separable distributions are those
in which only the coordinate distribution altered through modification of the
potential and Keff equals the kinetic energy of the system. For example, the Voter
dynamics (Voter 1997) and Tsallis statistics (Andricioaei and Straub 1997).

If the distribution functions are generated by the Hamiltonian functions, the
effective Hamiltonian is

Heff = − 1

β
lnF(H(q,p)) ≡ f (H(q,p))

Then, the Nosé-Hoover equations of motion for the generalised ensemble are

q̇ = f ′(H(q,p))M−1p (6.151)

ṗ = −f ′(H(q,p))∇qU(q)− πη

Q
p

η̇ = πη

Q

π̇η = f ′(H(q,p))pT M−1p − gNkBT

where

f ′(H(q,p)) = ∂f

∂H

Introducing a transformation of time variable as

dt

dτ
= 1

f ′(H(q,p))
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we can re-write the equations as (Barth et al. 2003):

dq
dτ

= M−1p (6.152)

dp
dτ

= −∇qU(q)− 1

f ′(H(q,p))
πη

Q
p

dη

dτ
= 1

f ′(H(q,p))
πη

Q

dπη

dτ
= pT M−1p − 1

f ′(H(q,p))
gNkBT

To separate the position and momentum variables, we can again re-write these
equations. For that, we can first write the conserved extended energy

Eext = f (H(q,p))+ π2
η

2Q
+ gNkBT η

Assuming that F is a monotonic function, so also f , we can solve it

H(q,p) = f−1

(
Eext −

π2
η

2Q
− gNkBT η

)

then a new function φ can be introduced as (Barth et al. 2003)

φ(η, πη) = 1

f ′

and the equations are re-written as:

dq
dτ

= M−1p (6.153)

dp
dτ

= −∇qU(q)− φ(η, πη)
πη

Q
p

dη

dτ
= φ(η, πη)

πη

Q

dπη

dτ
= pT M−1p − φ(η, πη)gNkBT

These equations represent the coupling between the thermostat variables, and the
positions and momenta are separated, allowing for efficient numerical integration
schemes.
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The equations of motion for the Nosé-Hoover chain of thermostats using the
generalised ensemble can be re-written similarly:

dq
dτ

= M−1p (6.154)

dp
dτ

= −∇qUeff(q)− φ(η, πη)
πη1

Q1
p

dηk

dτ
= φ(η, πη)

πηk

Qk

, k = 1, · · · ,M
dπη1

dη
= pT M−1p − φ(η, πη)

[
gNkBT − πη1πη2/Q2

]

dπηk

dτ
= φ(η, πη)

[
π2
ηk−1

Qk−1
− kBT − πηkπηk+1/Qk+1

]
, k = 2, · · · ,M − 1

πηM

dτ
= φ(η, πη)

[
π2
ηM−1

QM−1
− kBT

]

The Nosé-Poincaré equations of motion for this generalised distribution function
follow similarly:

dq
dτ

= M−1(p′/s) (6.155)

dp′

dτ
= −∇qU(q)

ds

dτ
= φ(s, π)s

π

Q

dπ

dτ
= φ(s, π)

[
1

s2 pT M−1p − gNkBT −ΔHF
N

]



Chapter 7
Molecular Mechanics

Many interesting problems that we would like to treat using computational molec-
ular modeling are unfortunately too large to be considered by quantum mechanics
(QM). Quantum mechanics methods consider the electronic structure in a molecular
system. Even when some of the electrons are omitted, still a large number of
particles must be considered, which makes the calculations time-consuming from
computations point of view.

Molecular mechanics (MM) methods (also known as force field methods) ignore
the electronic motion and write the energy function of the system as a function of
only nuclear positions. Therefore, MM is used to perform calculations on a system
containing a significant number of atoms. In some cases, MM can provide results
that are as accurate as high-level QM calculations, but for much faster computation
time. However, MM can not provide properties that depend upon the electronic
distribution in a molecule.

The first most important assumption in MM is the Born-Oppenheimer approx-
imation, which allows for writing the potential energy as a function of nuclear
coordinates only. MM uses simple models of interactions within a system, which
include contributions from stretching of bonds, angle bending, and rotations about
single bonds. An essential feature of MM is to use a set of parameters, developed for
a relatively small number of cases, applied to a broader range of problems. Besides,
the parameters generated from data on small molecules may also be used to study
much larger molecular systems, such as macromolecules (proteins, nucleic acids,
polymers, etc.).

7.1 Simple Molecular Mechanics Force Field

There are several MM force fields developed to study molecular systems, such as
CHARMM, Amber, Gromacs, MMx, etc. All these force fields can, in general,
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be interpreted in terms of a small number of components of the intra- and inter-
molecular forces within the system.

The functional form for the potential that can be used to model single molecules
or ensembles of atoms and/or molecules is given by (Leach 2001)

U(r) =
∑

bonds

ki,l

2

(
li − li,0

)2 (7.1)

+
∑

angles

ki,θ

2

(
θi − θi,0

)2

+
∑

torsions

Vn

2
(1 + cos(nω − γ ))

+
∑

improper

ki,η

2

(
ηi − ηi,0

)2

+
N∑

i=1

N∑

j=i+1

4εij

[(
σij

rij

)12

−
(
σij

rij

)6
]

(7.2)

+
N∑

i=1

N∑

j=i+1

qiqj

4πε0εrij
,

where U(r) denotes the potential energy, which is a function of the positions r of N
atoms.

The first term in Eq. (7.1) represents the interaction between pairs of bonded
atoms, which is given by a harmonic potential and it represents the increase in
energy when the bond length li deviated from its equilibrium value li,0. The second
term is a summation over all angles formed between three atoms A − B − C,
where A and C are both bonded to B. The contributions of each bond and angle
are characterized by the force constants ki,l and ki,θ and the reference values li,0
and θi,0.

The third term in Eq. (7.1) is the torsional potential that models the energy change
as a bond rotates, where ω is the torsional angle. The contribution from each torsion
angle is characterized by the barrier height Vn, the multiplicity n which gives the
number of minimum points in the function as the bond is rotated by 360◦, and γ

is the phase factor which determines where the torsional angle passes through its
minimum value.

The fourth term gives the improper torsion angle energy, used to maintain a
certain geometry of the molecule, such as planar geometry. This term depends on
the force constant ki,η and the torsion angle ηi,0, which represents the reference
equilibrium value of the improper torsion angle.

The fifth contribution is the non-bonded term, calculated between all pairs of
atoms i and j that are in different molecules or between atoms that are separated
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Fig. 7.1 Typical molecular
mechanics model for alanine
containing twelve stretching
bonds, seventeen angle
bending, seventeen torsion
angles, two improper angles
and twenty six non-bonded
interactions

by at least three bonds in the same molecule. The non-bonded interactions are
usually modeled using a Lennard-Jones (LJ) potential for van der Waals interactions
and the Coulombic potential term for electrostatic interactions. The van der Waals
interaction is calculated as an LJ potential with appropriate εij and σij parameters
which are the well-depth and collision diameter, respectively. The electrostatic
contribution is calculated using the Coulomb’s law from partial atomic charges (qi
and qj ) associated with each atom.

To explain every term, we considered the alanine molecule shown in Fig. 7.1. For
this molecule, a typical molecular mechanics model would contain twelve stretching
bonds (four C-H, two C-C, one C-N, two N-H, two C-O and one O-H bonds),
seventeen angle bending (such as C-O-H, O-C-O, O-C-C, C-C-H, C-C-N, C-C-C,
C-C-N, N-C-H, C-N-H, and H-N-H angle bending), seventeen torsion angles (such
as H-O-C-O, H-O-C-C, O-C-C-H, O-C-C-C, C-C-C-H, O-C-C-N, C-C-N-H, and
O-C-C-N torsion angles) and twenty six non-bonded (such as H-O, H-C, H-N, O-C,
and O-N non-bonded interactions).

7.2 Features of Molecular Mechanics Force Fields

A molecular mechanics force field is defined not only by the functional form, but
also the parameters (such as ki,l , ki,θ , Vn, εij , σij , and qi) in Eq. 7.1. An essential
feature is that two force fields may have the same functional form, but at the same
time very different set of parameters. Moreover, different force fields may give
approximately the same accuracy in calculations. Furthermore, different force fields
cannot be mixed; that is, it is not strictly allowed to divide the energy into individual
terms, and take some of the parameters from one force field and mix them with
parameters from another force field. However, some of the terms in a molecular
mechanics force field are sufficiently independent of the others (e.g., bond stretching
and angle bending terms) to make this approximation acceptable in some cases.

The non-bonded interactions determine the thermodynamic equilibrium and
processes, such as folding/unfolding, membrane, and micelle formation, ligand-,
DNA- and protein-protein binding, solvation (in membrane and water). Therefore,
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there exist three main problems in the parametrization of a mechanical force
field (van Gunsteren et al. 2006): minimal free energy differences and many
interactions, entropic effects, and variety of atoms and molecules.

It worth noting that molecular mechanics force fields are empirical; that is
there is no correct form for a force field. In principle, if one potential energy
functional form performs better than another force field, then it is likely that force
field will be favored. There have been many efforts to compare the accuracy of
different force fields. The potential energy functional form used in a force field
is a compromise between accuracy and computational efficiency. Thus, we expect
with increasing the computer performance, more complex functional forms will be
possible to incorporate into molecular mechanics force fields. Besides this, the new
potential functional forms should allow fast calculations of the first and second order
derivatives of energy function with respect to atomic coordinates to use methods
such as energy minimization and molecular dynamics.

7.3 Molecular Mechanics Force Field Parameters
Calibration

After choosing the specific functional form of the molecular mechanics force
field, the task of determining appropriate force field set of parameters remain
to be performed. The steps involved in this task include the type of data, sys-
tems, thermodynamic phase, and properties to be used in the calibration of a
specific set of parameters. The choices made from different force fields (for
example, CHARMM (Foloppe and MacKerell 2000; MacKerell and Banavali 2000;
MacKerell et al. 2004), GROMACS (Hünenberger and van Gunsteren 1997),
AMBER (Cornell et al. 1995), MM2 (Allinger 1977), MM3 (Allinger et al.
1990a,b), MM4 (Allinger et al. 1996a,b) and OPLS (Jorgensen and Tirado-Rives
1988)) can be different. Often, the use of small molecules for calibration is more
efficient since the parameters set can be transferred to other similar molecular
systems. For large macromolecules (such as proteins, DNA, etc.) group of atoms
may show different behavior depending on the environmental conditions in folded
molecules (e.g., pH, ionic concentration and temperature). Some properties may
also depend more strongly only on some force field set of parameters and less
strongly (or weakly) on others. In such cases, calibration efforts can be reduced
significantly by optimizing only a subset of all set of parameters using a limited
number of properties.

For parameterization of a force field there is a vast amount of data to be collected
from the existing experimental results or the quantum mechanics calculations. These
data include the structure properties, the geometry of the optimized molecular
structure, conformation energies, and thermodynamic properties. However, often,
there are missing data or sometimes difficult to obtain for some molecular systems.
Therefore, the quantum mechanics calculations are often used to provide these
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data for optimization of the force field parameters. Ab-initio approaches are used
to reproduce experimental results, in particular, for small molecular systems. The
validation of the force fields calibrated in this way is often a challenge when the
comparison with experimental data is performed. In general, this comparison is in
the following functional form:

U (R) =
∑

t

∑

i

Ut (Ψt (Ri )) (7.3)

where t runs over the all types of the interactions (such as those shown in Eq. (7.1)),
i runs over all particles representing the molecular structure, Ut is the model of
the potential function, and Ψt is a scalar function of the Cartesian coordinates
of each particle i, Ri , which is a mathematical model of the particular type of
interaction as depicted in Eq. (7.1). After the mathematical functional forms, Ut ,
are determined for each type of interactions, which are often chosen to be simple in
their mathematical forms, the next stage includes the optimization of the force field
parameters.

There are two traditional optimization approaches, such as the parameterization
by trial and error assessment and the least square fitting. Very recently, however, a
new approach is introduced using a machine learning method. In the following, we
will discuss all these three methods.

7.3.1 Parameterization by Trial and Error Assessment

Usually, the potential interaction types for the parameterization procedure are
classified into a hard term, such as stretching bond type and angle bending type, and
soft terms, such as torsion angle, van der Waals and electrostatic types. The hard
and soft terms are considered separately. In particular, bond stretching parameters
for the same kind of atoms are almost identical among all the force fields; therefore,
they are often omitted from the calibration, if there are already existing parameters.
On the other hand, all the soft terms are calibrated together because they are coupled
and hence they influence each other.

The protocol, often, includes the following steps in order:

(i) A range of the parameters for the van der Waals interactions is determined.
(ii) The partial charges are assigned to atoms using electrostatic potential energy

surface fitting procedure.
(iii) The torsion potential function is then determined as a function of the torsion

angle using a fitting procedure.

The torsion potentials are determined such that the heights of the barriers are
reproduced together with relative energies of different conformations, which is
done through an iterative procedure until the desired value of accuracy is achieved.
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For determination of the torsion potential energy barriers the quantum mechanics
calculations are often employed. The calibration protocol includes the following
steps:

1. Determine the molecular fragments of a molecular system that represent the
rotation bonds of the system.

2. Determine for each fragment the environment from the rest of the molecule close
to that fragment.

3. Determine a series of three-dimensional structures obtained by rotating the
molecule about the rotation bond at different angles, for example, in constant
steps.

4. Assign the parameters for the van der Waals interactions.
5. The partial charges are assigned to each atom at the chosen torsional angle

configuration using electrostatic potential energy surface fitting procedure.
6. Perform the quantum mechanics calculations to estimate the energy of the

configuration at each torsion angle.
7. Fit the torsion potential energy versus torsion angle curve: v(ω) = f (ω), where

the parameters for the van der Waals interactions and atomic partial charges are
incorporated in calculations.

8. Repeat from (4) to (7) until the desired convergence is achieved.

7.3.2 Least-Square Fitting

The least square fitting is another method used for calibration of the force field
parameters originally developed by Lifson and Warshel (1968) and Warshel and
Lifson (1970). The strategy behind the method is the fitting procedure of the
calculated data using the predicted force field parameters to the experimental data
and hence determining the set of parameters that give the best fit. The set of
experimental data that the force field has to reproduce or calculate (for example,
using the quantum mechanics) consist of thermodynamic properties, equilibrium
configuration geometries, and vibration frequencies. Assuming that the vector Y
represents the set of properties and the vector x the set of force field parameters,
then the following mean square of errors between the observed and calculated data
is subject to a minimization procedure:

S2 = 1

Ndata

Ndata∑

i=1

(
Y obs
i − Y calc

i (x)
)2

(7.4)

The idea behind is that by gently changing the set of parameters to their new values,
the error between the observed experimental property vector and the calculated one
can be expressed using the Taylor expansion in the following approximation:

Yobs − Ycalc(x + δx) = ΔY(x + δx) ≈ ΔY(x)+ Jδx
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where δx denotes a small change of the vector of the set of parameters x and J is the
matrix of the derivatives with elements defined as:

Jij = ∂Yi

∂xj

In practice, an iterative procedure is used to minimize S2. The method becomes very
efficient when the importance of each experimental data used in the fitting process
has to be specified, for example, assigning weights to each contribution term when
calculating the mean square of errors:

S2 =
Nset∑

s=1

Ws

N
(s)
data

N
(s)
data∑

i=1

(
Y

obs,s
i − Y

calc,s
i (x)

)2
(7.5)

where W is the vector of weights for each data set, Nset denotes the number
of data sets, and N

(s)
data is the number of data points in the set s. For example,

the thermodynamic property can be considered more important than the vibration
spectra and hence the weight of the thermodynamic data set is larger than the weight
of the vibration frequencies.

This method is successfully employed to calibrate the parameters of the peptides
and proteins force fields using the crystallographic experimental data (Hagler
et al. 1974, 1979a,b; Hagler and Lifson 1974). It showed that the hydrogen
bonding interactions could be incorporated into the electrostatic and van der Waals
interactions.

Note that, often, it is difficult to either fit or interpolate potential energy surfaces
using just a few surface points obtained by highly accurate calculations even
for small molecules. Therefore, the fitting procedure for calibration of the force
field parameters become practically a notoriously tricky protocol. On the other
hand, accurate reproduction of various molecular properties (such as conformation
changes, free energy of hydration, and so on) is challenging, time-consuming and
difficult to automate. Besides, consistency across all the other calibrated molecules
can be hard to establish.

7.3.3 Machine-Like Learning Approach

Recently, Grimme (2014) automated parameterization methods have shown a
great interest, where the quantum mechanically produced input data are used
in a machine learning represented as a black box producing in the output the
classical force fields for specific types of the interaction terms. The input quantum
mechanical data consist of optimized geometrical structures, atomic partial charges,
and covalent bonds. More recently, (Metz et al. 2016) another automated method
developed for calculation of the intermolecular potential energy surfaces using the
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symmetry-adapted perturbation theory calculation as reference data (Misquitta et al.
2005), which was applied to molecular systems up to 42 atoms. In Vleet et al.
(2016) and Vandenbrande et al. (2017) a new automated approach is introduced
for calibration of the force field parameters using the properties of the atoms in a
molecule as input parameters to characterize the chemical space of the molecules.

However, these approaches require some electronic structure based calculations
to be used as a reference for optimizations of the parameters of any new molecule
to be added. Besides, the screening from a large number of compounds necessary
for the calibration of the force field parameters of a new molecule encountered can
be computationally very demanding.

Very recently, another novel initiative is introduced for the development of new
methods to automate the force field parameterization. These methodologies use the
machine learning (ML) to automate the construction of the potentials based on the
large datasets of quantum mechanics calculations (Unke and Meuwly 2018; Lubbers
et al. 2018). Here, the potential energy surfaces are constructed to reproduce the
reference energies from electronic-structure calculations to predict intramolecular
interactions without needing to use the usual force field type of possible harmonic
approximation. However, these methods are not being able to extrapolate outside
the training dataset, but they do very well to interpolate across the training dataset.
Therefore, to accurately predict the interactions among many chemical compounds,
we have to increase the diversity across the molecules of the training dataset, and
hence the variety of the chemical space topology; This is because, in general, these
methodologies are governed by experience rather than the principles of physics or
chemistry. Thus, to properly incorporate all the laws of physics, one has to increase
the amount of the data to be analyzed.

To construct a data-driven model, such as the ML approach, requires specification
of the input data with necessary information about the system. Usually, the input
data is represented as an array of length N , X. This process is also called feature
description, and the input data are called feature descriptors. Next, the ML approach
requires the choice of the predictive algorithm and the determination of specific
hyper-parameters to be used for that algorithm, as discussed in the following.

7.3.3.1 Atomic Feature Descriptors

Often, SMILES (Simplified Molecular Input Line Entry System) uses the string
representation for molecules (Weininger 1988). Since most of the ML algorithms
require a numerical array of data, working with SMILES strings may not be as
such convenient. Therefore, a string of data from SMILES has to be decoded and
transformed into other descriptors, such as numerical.

Following Unke and Meuwly (2018), the atoms could be encoded by a single
integer number, such as H = 1, C = 2, N = 3, and so on, or by the nuclear charge
Z, such as H = 1, C = 6, N = 7, and so on. However, this creates a relationship
between the input data, namely H<C<N, which could influence on the network
performance (Unke and Meuwly 2018). Other encoding methods are also proposed
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(Unke and Meuwly 2018) (and the references therein), such as H = [1 0 0 · · · ],
C = [0 1 0 · · · ], N = [0 0 1 · · · ], and so on. This fingerprint suffers from the
fact that the dimensions of the encoding vector are not the same as the number of
elements in the set of atoms from the molecule, and secondly, the atoms belonging
to the same periodic table group of elements do not behave in the same manner.
Another interesting encoding is by embedding (Unke and Meuwly 2018), which is
a mapping from a discrete ordered object i to an embedded vector xi ∈ Rd of d-
dimensions. Determinations of the embedded dimensions d is discussed in details
in the next chapters. But, as discussed in the following, the topological data analysis
tools, can also be employed to determine embedded vectors.

Note that the feature descriptors have to do with automation of the chemical
perception of the molecule. Therefore, in particular, for force field developments,
novel automated chemical perceptions based on the chemical environment are
suggested (Mobley et al. 2018).

7.3.3.2 Environment Descriptors

The sum over bonds is a numerical descriptor representing a vector of bond types
present in a molecule. This vector is constructed with length Nb, where Nb is the
number of unique bond types present in the dataset of compounds to be studied.
While for each molecule included in the dataset, the descriptor vector contains the
integers giving the number of times each bond type is appearing in the molecular
structure.

The E-state vector is a fixed length descriptor encoding the electrotopological
state of a molecule (Hall and Kier 1995). Often, drug design studies use this
descriptor.

The so-called Morgan encoding or extended-connectivity encoding is another
topological representation with user-defined length (Rogers and Hahn 2010). This
fingerprint represents the local connectivity of group of atoms, in particular, it
represents either the presence or absence of the unique groupings of atoms in a
molecule.

The geometry of a molecule is often encoded in the so-called Coulomb matrix,
C, which for any two atoms i and j in a molecule is given as (Rupp et al. 2012):

Cij =

⎧
⎪⎪⎨

⎪⎪⎩

Z2.4
i

2
, i = j

ZiZj

rij
, i �= j

(7.6)

where Zi is the atomic number of the atom i and rij is the distance between the
atoms i and j . It takes into account the three-dimensional structure of the molecule
and hence for any given molecule it requires the nuclear charge and the Cartesian
coordinates of the atomic positions from the equilibrium geometry structure. By
definition, the Coulomb matrix is invariant under translation and rotation of the
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molecule in space; however, it is not invariant under the permutations of the atom
order. Therefore, the eigenvalues spectrum of C is used as a fingerprint of the
molecule, since they are invariant under permutations of both rows and columns.

Another encoding of the environment descriptor is described in Unke and
Meuwly (2018) using the density function, where for each atom i the information
up to a cutoff radius Rc is given by the neighborhood density function ρi as:

ρi(r) =
∑

j (rj≤Rc)

Zj δ
(| r − rj |

)
(7.7)

where the position r ∈ R3 is relative to atom i, Zj is the nuclear charge of the
neighboring atom j , and rj is the relative position vector of atom j relative to
atom i. Here, δ is the Dirac delta function and the sum runs over all neighboring
atoms of atom i within the cutoff distance Rc. In contrast to Coulomb matrix, the
neighborhood density function is both invariant under rotation and translation, and
permutations of the atoms ordering. To obtain a fixed length of the input vector for
the ML algorithm, X, the density function is approximated in terms of a basis set of
fixed dimension as (Unke and Meuwly 2018):

ρi(r) =
K−1∑

k=0

L−1∑

l=0

l∑

m=−l

cklmΦklm(r) (7.8)

where cklm are the expansion coefficients and Φklm(r) are the basis set functions:

Φklm(r) = Pk(r, Rc)Ylm(θ, φ)

where Pk(r, Rc) are the radial basis functions and Ylm(θ, φ) are the spherical
harmonics, where (θ, φ) are spherical polar angles. The radial basis functions are as
the following:

Pk(r, Rc) = S(r, Rc) exp

(
−K2

R2
c

(
r − (k − 1)

Rc

K

)2
)

(7.9)

where S(r, Rc) is a cutoff function given as

S(r, Rc) = (7.10)
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1, r ≤ Rs

1 − 6

(
r − Rs

Rc − Rs

)5

+ 15

(
r − Rs

Rc − Rs

)4

−10

(
r − Rs

Rc − Rs

)3

, Rs < r < Rc

0, r ≥ Rc
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which provides a smooth first and second derivatives of Pk(r, Rc) at the boundary
(i.e., r = Rc) (Unke and Meuwly 2018). Here, Rs = Rc − Rc/K is the switching
radius, that is the cutoff function S(r, Rc) influences the values of radial basis
function Pk(r, Rc) only for r > Rs .

For K and L sufficiently large, then the information obtained from the coeffi-
cients cklm is close to that encoded in ρi . From Eq. (7.8), cklm can be calculated
as:

cklm =
∫

ρi(r)Φklm(r)d3r =
∑

j (rj≤Rc)

ZjΦklm(rj ) (7.11)

Eq. (7.11) indicates that cklm depend on the orientations of axes of the reference
frame and hence they are not rotational invariant. However, these coefficients can
be combined to the rotational invariant coefficients as (Unke and Meuwly 2018):

akl =
(

4π

2l + 1

l∑

m=−l

(−1)mcklmckl−m

)1/2

(7.12)

The coefficients akl , in total K L different coefficients, can be added to the atom
feature descriptor embedding vector of dimensional Ng to form the descriptor vector
X ∈ RNg+K L, which is the input data vector for the ML algorithm. Typically, L =
K = 7 and Rc = 3 Å were suggested for all datasets considered in Unke and
Meuwly (2018).

Very recently, (Faber et al. 2018) the set of interatomic M-body expansion
coefficients were proposed to represent the feature descriptors:

A
(M)
i =

{
A

(1)
i , A

(2)
i , A

(3)
i , · · · , A(M)

i

}
(7.13)

This set represents the structural and chemical environment descriptor of the atom
i in a molecule containing up to M-body interactions. In general, A(m)

i is expressed
as a weighted sum running over all m-body interactions. For example, in the case of
3-body interactions (Faber et al. 2018), the first-order coefficient, A(1)

i describes the
chemical composition and it is represented as:

A
(1)
i = G(x(1)i ) ≡ exp

(
− (Pi − P

(0)
i )2

2σ 2
P

− (Gi −G
(0)
i )2

2σ 2
G

)
(7.14)

where vector x(1)i = (Pi, σP ,Gi, σG) represents the feature descriptor of atom i

with the widths σP and σG characterizing the smearing parameters for the period and
the group in the periodic table, respectively. Here, P (0)

i and G
(0)
i are two arbitrary

variables representing the centers of the Gaussian functions.
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The second-order coefficient is:

A
(2)
i = G(x(1)i )

∑

j �=i

ξ2(dji)G(x(2)j ) (7.15)

where vector x(2)j = (
dji, σd, Pj , σP ,Gj , σG

)
represents the environment descrip-

tor of atom i with dji being the interatomic distance at which a Gaussian with

width σd and center at d(0)
j i is placed. Here, ξ2 is the 2-body scaling function of

the interatomic distance given as a power law.
Similarly, the third-order coefficient is as the following:

A
(3)
i = G(x(1)i )

∑

j �=i

G(x(2)j )
∑

k �=i,j

ξ3(dji, dki , θijk)G(x(3)ijk) (7.16)

where x(3)ijk =
(
θijk, σθ , Pk, σP ,Gk, σG

)
, and ξ3(dji, dki , θijk) is the 3-body scaling

function, and θijk is the bending angle between the position vectors rij and rik . σθ
is the width of the Gaussian placed at θijk .

The scaling functions follow the power laws as (Faber et al. 2018):

ξ2(dji) = 1

dα
ji

(7.17)

ξ3(dji, dki , θijk) = 1 − 3 cos(θijk) cos(θjik) cos(θkji)

(djidkidjk)β

where α = 4 and β = 2. Here, θjik is the bending angle between the vectors rj i and
rjk , and θkji is the bending angle between the vectors rkj and rki . The following
values of the hyper-parameters were also suggested (Faber et al. 2018):

σP = σG = 1.6, σd = 0.2 Å, σθ = π

This feature descriptors approach is successfully employed to predict intermolecular
interactions from the physics-based models, such as atom-distributed multipole
electrostatics, charge penetration, repulsion, induction/polarization, and many-body
dispersion of the difficult small molecule dimer data sets, water clusters, host-guest
complexes, DNA base pairs, the benzene crystal, and amino-acid pairs (Bereau et al.
2018).

7.3.3.3 Machine Learning Approaches

Consider a method to learn a function from a finite dataset D of input-output pairs,
namely (X,Y), where X is the feature descriptor input vector for each atom and Y
is the reference output vector for each atom, such as energy, charge, dipole moment,
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polarization, force, and so on. The dataset is then split into a training dataset Dtrain
used for learning (or gaining experience) and a validation dataset Dvalid used for
testing the knowledge, such that

D = Dtrain ∪Dvalid

Often, the size of the training dataset is about 80 % of total dataset size.

LASSO

LASSO regression is a method used to minimize the sum of squares of the error
between the observed and predicted values as (Hastie et al. 2009):

S2 =
Ntrain∑

i=1

(
Y obs
i − Y calc

i

)2 + λ

Ntrain∑

i,j=1

| βij | (7.18)

where Ntrain is the size of the training dataset. Here,

Ycalc = βX

where β is the matrix of the regression coefficients and X is the input vector
of feature descriptors across the dataset of molecules evaluated. Note that S2 in
Eq. (7.18) is subject to the minimization with respect to λ and β with λ being the
so-called regularization hyper-parameter.

The second term in Eq. (7.18) represents the regularization term, which is
controlled by λ. The regularization is often used to avoid the overfitting of the
training dataset because of the similarities in the input descriptors among the
molecules, and it is also known as bias-variance trade-off. For large λ values, some
of the terms of the matrix β will be approximately zero, and then the model can
be more straightforward to interpret and more efficiently to evaluate since there are
fewer parameters to calibrate.

Kernel-Ridge Method

According to kernel-ridge method, the learning function is as the following (Hastie
et al. 2009):

Y calc(x) =
Ntrain∑

d=1

K(x, xd)

Ntrain∑

d ′=1

(K + λI)−1
dd ′ Y

obs(xd ′) (7.19)
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where K is the empirical kernel matrix and I is the identity matrix and λ is the
regularization hyper-parameter. Kernel-ridge method reduces the value of regression
coefficients, β:

βd =
Ntrain∑

d ′=1

(K + λI)−1
dd ′ Y

obs(xd ′) (7.20)

by introducing a second-order regularization term, which is a quadratic penalty
on regression coefficients, known as the kernel trick, which allows for an efficient
evaluation of the model in a high dimensional space.

The method is subject to obtaining the solution for the regression coefficients
βd (for d = 1, 2, · · · , Ntrain) using the linear regression fit with regularization λ

by minimizing the following sum of the square errors between the calculated and
observed values:

S2 =
Ntrain∑

i=1

(
Y obs
i − Y calc

i

)2
(7.21)

Gaussian Process Regression

The Gaussian process regression is a Bayesian method, which is very similar
to kernel ridge regression, however, not identical. The main assumption of the
Gaussian process is that the distribution regarding the noise in the data is known
a priory (Rasmussen and Williams 2006). Therefore, it can predict both the mean
value of the observations and the uncertainty for each prediction.

In the Gaussian process regression, the learning function is given by Eq. (7.19)
for the kernel-ridge method (Zeni et al. 2018), where K is a matrix-valued
kernel function encoding the correlations of the outputs between any two atomic
environments, Kdd ′ = K(xd, xd ′), and λ is the regularization hyper-parameter that
adjusts the error with the training dataset outputs. Often, it is fixed at 10−5 (Zeni
et al. 2018). Usually, the prediction efficiency of the method depends on the choice
of the kernel function K, the hyper-parameters, and the diversity of the training
data set. In Zeni et al. (2018) and Bereau et al. (2018), there are proposed different
choices for the kernel function in the calculations of the force fields for nanoclusters
and alchemical and structural distribution.

Artificial Neural Network

As a contrasting approach to the Gaussian process, the artificial neural networks
have emerged recently as the flexible parametric approaches to fit complex pattern
data (Anderson 1995). The artificial neural networks are predictive tools consisting
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of many simple connected nodes that work in parallel. These nodes are also called
neurons. The connections between neurons are weighted by the so-called weights,
which are real numbers considered, along with the bias parameters, the primary
means of learning in neural networks.

The parameters of an artificial neural network are the number of hidden layers
K , number of nodes for each layer k, Lk , and the point-wise non-linear functions
neurons f , the so-called transfer functions. For the ith component of the activation
vector in the lth layer, post non-linearity and post transformation are denoted by Xl

i

and Zl
i , respectively. For example, for a single-hidden layer neural network:

Z1
i (x) =

L1∑

j=1

W 1
ijX

1
j (x)+ b1

i (7.22)

X1
j (x) = f

(
n∑

k=1

W 0
jkXk + b0

j

)
(7.23)

Wl
ij and blj are the weights and bias parameter, respectively. For the general case of

the K-hidden layers the functional form and the mathematical details are discussed
in the following chapter.

Different transfer functions can be suggested (Anderson 1995):

f (z) = 1

1 + exp(−z)
(7.24)

f (z) = 1

1 + z2 (7.25)

f (z) = tanh(z) (7.26)

A single-hidden layer neural network with identically independent distributed
initial parameters is equivalent to a Gaussian process described above in the case
of the infinite network width, that is L1 → ∞ (Anderson 1995); This, in turn,
allows establishing a Bayesian inference framework for the infinite width neural
network. Furthermore, kernel functions can be generated to describe the multi-layer
artificial neural networks, which can be used as covariance functions for Gaussian
process regression and hence allowing full Bayesian prediction for an artificial
neural network (Lee et al. 2018).

In Eq. (7.22), assuming that initial weights and bias parameters are taken as
identically independent distributed random variables, that is:

W 0
ij ∼ G(0, σ 2

w/Ntrain), b0
j ∼ G(0, σ 2

b ) (7.27)

then x1
j and x1

j ′ are independent for j �= j ′. In addition, Z1
i (x) is sum of the

identically independent distributed terms, therefore, based on the Center Limit
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Theorem in the limit of the infinite network width (L1 → ∞) it follows that Z1
i (x)

is Gaussian distributed. Moreover, a finite process

Z1
i (X), X = (x1, x2, · · · , xn)

has a joint Gaussian distribution, that is, it forms a Gaussian process. Therefore, Z1
i

is a Gaussian process with mean μ1 and covariance K1 (Rasmussen and Williams
2006)

Z1
i ∼ G(μ1,K1)

where

μ1(x) = E[Z1
i (x)] = 0

and

K1(x, x′) = E[Z1
i (x)Z

1
i (x

′)] = σ 2
b + σ 2

wC(x, x′)

with C being the covariance:

C(x, x′) = E[X1
i (x)X

1
i (x

′)] = E
[
f (Z0

i (x))f (Z0
i (x

′))
]

For a K-hidden layer neural network, Eq. (7.22) can be generalized for the lth layer
as:

Zl
i(x) =

Ll∑

j=1

Wl
ijX

l
j (x)+ bli (7.28)

Xl
j (x) = f

⎛

⎝
Ll−1∑

k=1

Wl−1
jk Xl−1

k + bl−1
j

⎞

⎠ (7.29)

where Zl
i(x) are identically independent distributed random variables, and Zl

i(X)

forms a Gaussian random process for Ll → ∞: Zl
i ∼ G(0,Kl), with covariance Kl

given as (Anderson 1995)

Kl(x, x′) = E[Zl
i(x)Z

l
i (x

′)] = σ 2
b + σ 2

wE
[
f (Zl−1

i (x))f (Zl−1
i (x′))

]

which can be re-written in the following recursive form (Lee et al. 2018):

Kl(x, x′) = σ 2
b + σ 2

wGf

(
Kl−1(x, x′),Kl−1(x, x),Kl−1(x′, x′)

)
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where Gf is a deterministic function depending on the choice of the function
f . This indicates that the artificial neural network can be performed in a series
of computations obtaining Kl as in the Gaussian process regression described
above. Therefore, there exists an equivalence between the Gaussian process and
the artificial neural network in the limit of Lk → ∞ and that initially the weights
and bias parameters are drawn from identically independent distributed random
variables by Eq. (7.27).

Therefore, we can use the Gaussian process to do Bayesian training of artificial
neural network (Rasmussen and Williams 2006). Following Lee et al. (2018), for
that, assume a dataset D with elements (Xi, Yi) for i = 1, 2, · · · , Ntrain representing
the input-reference data-point pairs. The aim is to do a Bayesian prediction of some
test point X� using the distribution of the outputs Z(X) as obtained from a trained
artificial neural network with probability:

P(Y �|D, X�) =
∫

dZP(Y �|Z,X, X�)P (Z|D) (7.30)

= 1

P(Y)

∫
dZP(Y �,Z|X�,X)P (Y|Z)

where Y � is the predicted output value of the input value X�. Note that the well-
known relation p(x, y) = p(x|y)p(y) is used twice to obtain the final expression. In
Eq. (7.30), P(Y|Z) gives probability of obtaining the reference distribution Y from
the artificial neural network with an output of the distribution Z from the training
dataset, therefore, it represents the error in the output of the artificial neural network,
and it can be modeled as noise centered at the output distribution Z and variance σ 2

ε

with an unbiased estimate as:

σ 2
ε = 1

Ntrain

Ntrain∑

i=1

(Zi − Yi)
2

That is, under the condition of the initial choice of the parameters and assuming that
network width is infinite, this implies that process

Z1, Z2, · · · , ZNtrain , Y
�

is a Gaussian process and hence P(Y �,Z|X�,X) ∼ G(0,K) is a multivariate
Gaussian with covariance (Lee et al. 2018)

K =
[

KD,D KT
X�,D

KX�,D KX�,X�

]
(7.31)

where X� is the test point. In Eq. (7.31), KD,D is a Ntrain ×Ntrain block matrix with
elements Kij = K(Xi,Xj ) where both Xi and Xj are drawn from D. On the other
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hand, KX�,D is a block matrix whose elements are Kij = K(X∗, Xi) with only
Xi ∈ D. The integration in Eq. (7.30) can be performed exactly to get (Lee et al.
2018)

P(Y �|D, X�) ∼ G(μ̂, K̂) (7.32)

μ̂ = KX�,D
(

KD,D + σ 2
ε I

)−1
Y

K̂ = KX�,X� − KX�,D
(

KD,D + σ 2
ε I

)−1
KT

X�,D

However, the prediction of P(Y �|D, X�) and hence the calculation of the
mean value and variance of the predicted value Y � are under the assumption of
the infinite width of the networks to apply the Center Limit Theorem. That is
practically difficult to implement. Therefore, in Chap. 8, we are going to introduce
an alternative approach for evaluation of P(Y �|D, X�) and the mean value and
variance of the test data points. This approach is based on the bootstrapping
methodology combined with a swarm particle intelligence approach for adding
additional higher order terms to the regularization parameters set.

7.3.4 Perspectives of Automated Force Field Parameterization

There are two conventional approaches discussed above and which are often used
to calculate the force field parameters, namely the traditional method and the
automated procedure.

Figure 7.2 shows the methodology schematically for parameterization of the
force fields using a traditional approach. For every molecule, the input vector uses
either experimental or quantum mechanically generated data (which can compu-
tationally be very expensive). Often, in particular for large molecular systems, a
fragmentation of the molecule needs to be done, and then the feature descriptions

Fig. 7.2 A diagram of the general protocol for parameterization of the classical force fields using
the traditional approach
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of the molecule are characterized, which are related to the type of interaction terms
used in the force fields. Then, the next step requires both human and computer
efforts to perform a fitting to obtain the force field parameters, which is the most
cumbersome task in terms of computing power and time. Therefore, in practice,
in computer simulations of the (bio)molecular systems establishing the force field
parameters become the most critical and difficult task, and the traditional approach
may not be the most efficient methodology, though it may be the most accurate
one. However, the high demands in terms of the human and computer efforts, often,
require to sacrifice the accuracy for efficiency. Therefore, the automated approaches
are becoming very popular as a new methodology in predicting the force field
parameters.

Figure 7.3 shows the methodology schematically for parameterization of the
force fields using an automated machine-like learning approach. In this approach,
first a training data set of molecules, D is created consisting of Ntrain pairs (Xi, Yi)

for i = 1, 2, · · · , Ntrain, where the vector X denote the feature descriptors and
Y the reference values. The feature descriptors are used as input for training a
black box, representing a machine learning (e.g., an artificial neural network) by
minimizing the error between the output data from the machine, Z and the reference
values Y. The final aim of the training a machine-like learning engine is to obtain
an estimate of the probability P(Y �|D, X�) to predict the output Y � of a trained
machine, such as neural network, for any input test data-point X�. This calculation
is now an automated process since the black box is trained to predict the output

Fig. 7.3 A diagram of the general protocol for parameterization of the classical force fields using
the automated machine learning approach
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value described by the probability P(Y �|D, X�), which makes the parameterization
of the force fields a very efficient automation process.

However, based on the above discussion, the accuracy in estimation of that
probability, namely P(Y �|D, X�), is a data-driven process, and the evaluation of
Y � depends on the trained dataset. In particular, it depends on the diversity of the
feature descriptors for the dataset of molecules and the size of the dataset. Both
the feature descriptors diversity of the compounds and the size of the dataset are
interconnected; however, a large size dataset is practically difficult to be established
due to the lack of the experimental data, and quantum mechanics data may be
expensive to obtain. On the other hand, the diversity of the feature descriptors of
the compound database is essential to increase the range of the test data that can be
predicted since the machine learning methodology works very well in interpolating
the new data points, but suffers on extrapolating new data outside the range covered
by the training dataset. Therefore, one of the critical future developments of the
automated machine learning methodologies is the choice of the training dataset and
the feature descriptors of the chemical compounds. Therefore, in the following, the
topological data analysis tools is employed to analyze the feature descriptors of the
molecules.

7.3.4.1 Topological Data Analysis

The topological data analysis (TDA) is a field dealing with the topology of the data
to understand and analyze large and complex datasets (Carlsson 2009; Edelsbrunner
and Harer 2010). In the following discussion, we assume that we are analyzing a
dataset represented by a vector of feature descriptors of length N and each data
point has a dimension D:

X = {x1, x2, · · · , xN }, xi = {xi1, xi2, · · · , xiD} (7.33)

For example, N may represent the number of molecules in the dataset and d number
of specific features for each molecule. Moreover, in our discussion, we assume that
the data of the dataset are hidden in a “black box”, for example, a database, and
also, they are about to be used by a machine learning, which is another “black box”.
In such a situation, knowing about the topology of the data (e.g., the sparsity of the
data points) is of great interest. Note that the TDA is applicable even when the user
has access to the data, that is, the structure of the molecules of the dataset is known
a priory. In such a situation, the TDA can be applied to determine the topology
of the key feature descriptors for each molecule. Note that the TDA is employed
to reveal the intrinsic persistent features of the DNA and RNA (Xia et al. 2015;
Mamuye et al. 2016). Therefore, the construction of the topological spaces upon
the input data of a machine learning approach can be applied for each dimension
separately, namely to the time series of the form Xd = {x1d , x2d , · · · , xNd}, or for
each molecular structure, namely Xk = {xk1, xk2, · · · , xkD}. But, it can also apply
to both dimensions at the same time, for instance, by constructing the input data in
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the form of the following time series obtained by aligning feature descriptors of the
molecular structures in one dimension:

X = {x11, · · · , x1D, x21, · · · , x2D, · · · , xN1, · · · , xND} (7.34)

In that case, the input vector of the feature descriptors is a time series of length
Ntrain = ND.

Then, to determine the topological space for this dataset, we first define a distance
σ > 0. The Vietoris-Rips simplicial complex R(X, σ ) or simply Rips complex for
each k = 1, 2, · · · as a k-simplex of vertices Xk

i = {xi1 , xi2 , · · · , xik } such that
they satisfy the condition that the mutual distances between any pair of the vertices
is less than σ :

d(xik , xil ) ≤ σ, ∀xik , xil ∈ Xk
i (7.35)

With other words, a k-simplex is part of a R(X, σ ) for every set of k data points that
are distinct from each-other at a resolution σ and hence the Rips complexes form a
filtration of the data from the dataset at a resolution σ . That is, for any two values
of the resolution σ and σ ′ such that σ < σ ′, then

R(X, σ ) ⊆ R(X, σ ′)

where ⊆ denotes the subset.
All the vertices of a k-simplex can be connected in a two-dimensional space

by undirected edges forming a graph, which can have different two-dimensional
shapes. Figure 7.4 illustrates how to build simplicial complexes using a set of point
cloud data by increasing the resolution value σ .

The k-simplex dataset points form a loop that is called hole. By increasing the
resolution σ , the shapes grow, and some of the holes die, and some new holes are

Fig. 7.4 An illustration of
building the simplicial
complexes by increasing the
resolution value σ
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born. This process is the so-called σ loop expansion. The interval between birth and
death of a hole is called persistence interval indicating whether a hole is structurally
relevant or just a noise into the data.

Persistent homology (PH) is an essential tool of TDA, which aims to construct a
topological space gradually upon the input dataset, which is done by growing shapes
based on the input data. Persistent homology measures in this way the persistence
interval of the topological space. The features will be identified as persistent if after
the last iteration they are still present.

This procedure is analog to systematic coarse-graining and is of crucial impor-
tance for any attempt at capturing natural feature descriptors in terms of a few
relevant degrees of freedom, and thus they form the essential philosophical basis
of a dataset for the machine learning approaches.

I may argue that the fundamentals of the PH notions on the relevance or
irrelevance of perturbations in the data analysis are crucial, and the persistence
homology can be considered as necessary as the renormalization group theory in
statistical physics when applied to equilibrium phenomena in understanding the
relevant or irrelevant interactions. In this analogy, the resolution scaling σ on the
topological data analysis can be considered similar to the characteristic correlation
length scale that determines the judgment of the strong interactions and correlations
renormalization group theory (Täuber 2012).

7.3.4.2 Hardware Versus Software Machine Learning Approach

The advanced digital technologies use binary bits that take two values, either
zero or one, and are stored using modern technologies at room temperature. On
the other hand, quantum circuits use q-bits that are a superposition of the states
zero and one and require novel technologies to work at cryogenic temperatures.
Recently, (Camsari et al. 2017, 2019) classical p-bits, standing for probabilistic-bits,
is defined as a building unit between the bits and q-bits. Note that the concept of the
probabilistic computers is also described by Feynman that inspired developments of
quantum computers (Feynman 1982). While the basic building block of the modern
digital electronics is the transistor, used to represent deterministic bits (namely zero
and one), it is argued (Camsari et al. 2019) that the existing technologies of digital
electronics can be used to create the basic hardware building blocks of probabilistic
computers, called p-circuits. Furthermore, possible applications that probabilistic
computer can be used is discussed.

Note that we already discussed above several interesting problems, such as
automated machine learning approaches of the force field parameters, which may
involve use of large probabilistic networks. In particular, the p-bit concept relates to
that of the binary stochastic neuron (BSN) used in the machine learning (Camsari
et al. 2019). In BSN, the response Zi to an input Xi is given as:

Zi = sign (tanhXi − r) (7.36)
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where sign function is defined as

sign(x) =
{−1, x < 0
+1, x ≥ 0

and r is a random number between −1 and +1. Then, the binary state “0” is obtained
for m = −1 and state “1” for m = +1. The probabilistic network is then obtained
when combined as:

Xi =
∑

j

WjiZj + bi (7.37)

where Wij is the weight and bi is the bias parameter. Equations (7.36) and (7.37) are
the basic building blocks of the software algorithms in a machine learning approach
similarly to Eq. (7.22).

Efforts have been made to develop hardware basic building blocks to accelerate
the operations described by Eqs. (7.36) and (7.37) in hardware level (Hu et al. 2016;
Camsari et al. 2019). In particular, Camsari et al. (2017, 2019) propose that the
three-terminal p-bits provide a hardware accelerator for Eq. (7.36). These hardware
basic building blocks can serve for building a probabilistic computer, which like
a quantum computer can be used to accelerate the quantum computations, the
probabilistic computer can be used to accelerate machine learning approaches using
stochastic neural networks.

Figure 7.5 shows the p-bits (neurons) interconnected to each other via a network
of resistances (synapse) constructing the building block architecture used in a
hardware stochastic neural network (Camsari et al. 2017). The equations describing
the synapse and the p-bit are given as (Camsari et al. 2017, 2019) (and the references
therein):

V out
j

VDD/2︸ ︷︷ ︸
Zj

= sign

⎛

⎜⎜⎜⎜⎝
tanh

(
V in
j

V0

)

︸ ︷︷ ︸
Xj

−r

⎞

⎟⎟⎟⎟⎠
(7.38)

V in
i

V0︸︷︷︸
Xi

=
∑

j

R0

Rji︸︷︷︸
Wji

V out
j

VDD/2︸ ︷︷ ︸
Zj

(7.39)

V in
i︸︷︷︸
Xi

=
∑

j

Rref

Rji︸︷︷︸
Wji

V̄ out
j︸︷︷︸
Zj

(7.40)
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Fig. 7.5 The digital circuit of the p-bit and synapse represented by a stochastic neural network in
hardware (Camsari et al. 2017) (and the references therein). The fixed layer ferromagnetic (FM)
presents a stable magnet with large energy barrier; the free layer is a circular low-barrier magnet
(LBM) with a height approximately 0 kBT , whose magnetization varies due to thermal noise

where R0 is the unit resistor that is used to change the inverse temperature β as

β = VDDRref

2V0R0

and V0 is the transistor voltage parameter, V0 = 40 mV defining the stochastic win-
dow width of the p-bit (tanh(V in

j /V0)). For the synaptic connections is used either

V out or V̄ out depending on the sign of the interconnection Wji . Note that similar
control is achieved using a network of capacitors, replacing the resistors (Camsari
et al. 2019).

Full on-chip implementation of the p-bit could have many applications (Camsari
et al. 2019), including a low-power and an efficient hardware accelerator for
use in machine learning applications. In particular, the network of p-bits could
be useful to accelerate learning algorithms, where the network weights and bias
parameters are trained offline by a learning algorithm in software, and then the
hardware can be used to perform inference tasks efficiently (Camsari et al. 2019)
(and the references therein). A natural application of these stochastic circuits is
in automation of the force field parameterizations that inspire the use of machine
learning algorithms as discussed above. Moreover, soon, a complex multi-chip
synapse/p-bit combination (Camsari et al. 2019) could also be more useful, for
example, in molecular dynamics simulation.
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7.4 Classical Force Fields Interaction Types

7.4.1 Bond Stretching

There are many functional forms to model the potential energy curve for a typical
bond. One of this include the Morse potential, which has the form:

v(l) = De

[
1 − exp (−(l − l0))

]2 (7.41)

De is the depth of the potential energy minimum and a = ω
√
μ/2De, where μ is

the reduced mass and ω is the frequency of the bond vibration, which is related to
the stiffness constant of bond stretching k, by ω = √

k/μ. l0is the reference value of
the bond (or equilibrium bond length.) Fig. 7.6 shows the Morse potential functional
form. Note that the Morse potential is not often used in molecular simulations
since it requires more computational efforts and it also needs three parameters
to parametrise. In additional, at temperatures considered in molecular dynamics
simulations it is not common that bonds deviate significantly from their equilibrium
values. More simple expressions are often used, such as this using Hooke’s law
formula, where the energy is a functional of the square of the displacement from an
equilibrium bond length l0:

v(l) = k

2
(l − l0)

2 (7.42)

The functional form is shown in Fig. 7.6.
The reference bond length or sometimes called equilibrium bond length repre-

sents the value of bond length at minimum energy structure when all the other terms
in the force field also contribute. Typical values of the force constants for bond
stretching are very high in magnitude, indicating that the forces between bonded
atoms are very strong and significantly high energy is required to deviate the bonded
atoms far from their equilibrium distance.

Fig. 7.6 The Morse potential
and Hooke’s law potential of
bond stretching
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The Hooke’s law functional form is another practical shape of the potential
energy, which is used to model the bottom of the potential well at a distance that
corresponds to bonding in ground-state molecules. However, it is less accurate away
from the equilibrium, as indicated in Fig. 7.6. Higher terms can also be included
in the expression of the Hooke’s law functional form, which results in a better
approximation to the Morse functional form:

v(l) = k

2
(l − l0)

2
[
1 − k′(l − l0)− k′′(l − l0)

2 − k′′′(l − l0)
3 + · · ·

]

7.4.2 Angle Bending

The Hooke’s law, or often called harmonic potential, is the formula used to describe
the deviations of angles from their equilibrium values. This is given as

v(θ) = k

2
(θ − θ0)

2 (7.43)

Two parameters are used to characterise this term, the force constant (k) and the
equilibrium angle θ0. Compare to bond stretching, rather less energy is required
to deviate the angle away from the equilibrium value. Thus, the values of the
force constants of angle bending are smaller than the force constants of bond
stretching. Similar to bond stretching, higher order terms can also be included into
the expression for the energy function of the angle bending, such as:

v(θ) = k

2
(θ − θ0)

2
[
1 − k′(θ − θ0)− k′′(θ − θ0)

2 − k′′′(θ − θ0)
3 + · · ·

]

7.4.3 Torsional Angle

The torsional angle term is considered as soft degree of freedom, in contrast to
bond stretching and angle bending terms which are considered as hard degrees of
freedom, because much less energy is required to cause a significant deviation from
the equilibrium value.

Most of the molecular mechanics force fields use a torsional potential functional
form that is expressed as a cosine series expansion, such as

v(ω) =
N∑

n=0

Vn

2
[1 + cos(nω − γ )] (7.44)
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Fig. 7.7 The torsion energy
plotted for different values of
Vn, n and γ

where ω is the torsional angle formed by a quartet of atoms A− B − C −D in the
system. There also exists an equivalent expression of the following form:

v(ω) =
N∑

n=0

Cn cos(ω)n (7.45)

The parameter Vn in Eq. (7.44) is also called barrier height, which gives a
contribution to barrier height due to the rotation. In Eq. (7.44), n is the multiplicity,
which characterizes the number of minimum points in the function as the bond
rotates through 360◦, γ is the phase factor that represents the position where the
torsion angle passes through the minimum value. For example, n = 3 and γ = 0
would give a rotational profile with minima at torsion angles of ±60◦ and 180◦ and
a maximum at ±120◦ and 0◦; for n = 2 and γ = π the rotational profile will result
with minima at 0◦ and 180◦. That is indicated in Fig. 7.7. As can be seen, a larger
value of Vn would give a more significant barrier of the torsion energy. Molecular
mechanics force fields often contain just one term from the cosine series expansion,
but there are also cases when it is found necessary to include more than one term,
for instance, in AMBER force field. Another feature of the force fields is that energy
profile for rotation about a bond depends upon the atom types of the two atoms of
the central bond and not upon the type of terminal atoms. For example, all torsional
angles in which the central bond is between two sp3- hybridized carbon atoms (H-
C-C-H, C-C-C-C, H-C-C-C) are assigned the same torsional parameters, with some
exclusion, such as O-C-C-O torsion angle.

7.4.4 The van der Waals Potential

The electrostatic interactions cannot include all non-bonded interactions in a
system. For example, in rare cases, where all multipole moments are zero, there
are no dipole-dipole and dipole-induced dipole interactions. However, there exist
interactions between atoms, manifested on the existence of different phases, such as
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Fig. 7.8 (a) The van der
Waals interaction between
two isolated argon atoms. (b)
The attractive and repulsive
parts of the total van der
Waals interaction energy.
Energy is given in kcal/mol,
and the force (in Newton) is
scaled by 1013 to show it in
the same plot with energy.
For argon σ = 3.40 Å and
ε = 0.99 kJ/mol

liquid and solid phases. Van der Waals first introduced that deviation from the ideal
gas phase.

Experimental investigations of the interaction between two isolated rare gas
atoms, for example, argon atoms, using the molecular beam experiment, reveal the
following interaction energy as a function of the separation between atoms as shown
in Fig. 7.8. Some standard features include that interaction energy goes to zero at the
infinite separation between the atoms. As the distance reduces, the energy decreases,
passing through a minimum value of approximately 3.82 Å. The energy increases
very rapidly as the separation decreases further.

Figure 7.8 shows the force between the two atoms, calculated as the minus
derivative of the interaction energy with respect to the separation distance. Other
experimental methods used to provide evidence of the nature of van der Waals
interactions include gas imperfections, spectroscopic techniques, and measurements
of the transport properties.

The van der Waals interactions are considered to arise from a glance between
attractive and repulsive forces. Attractive forces are long-range, so they act at long
distances between atoms; whereas repulsive forces are short-range, so they operate
at short distances between atoms.

The attractive term is due to dispersive forces, and can be explained using quan-
tum mechanics (London 1930). The dispersive force is due to instantaneous dipoles
which arise during the fluctuations in the electronic clouds. The instantaneous dipole
in a molecule can, in turn, induce a dipole in the neighboring atoms, giving rise to
an attractive inductive effect.

Figure 7.8 shows that a small decrease in the distance between two isolated
pairs of atoms causes a significant increase in the interaction energy. The basis
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of this increase is quantum mechanical, and it is understood in terms of the Pauli
principle, which does not allow for having any two electrons of the system with the
same set of quantum numbers. The interaction is because of having two electrons
with the same spin, and hence it is short-range interaction with repulsive forces,
referred to as exchange forces or overlap forces. The effect of exchange is to reduce
the electrostatic repulsion between two paired electrons, so not allowing them to
occupy the same internuclear region of space. This reduction of the electron density
in the internuclear region results in repulsion between the two nuclei. At very short
distances between two nuclei, the interaction energy varies as 1/r due to the nuclear
repulsion, and at more considerable distances, the energy decays exponentially as
exp(−2r/a0), where a0 is the Bohr radius.

The van der Waals potential for a non bonded distance rij has the common form
of a Lennard-Jones in a macromolecular force field given as:

VLJ(rij ) = 4εij

(
σ 12
ij

r12
ij

− σ 6
ij

r6
ij

)
(7.46)

where εij is the well depth and σij is the collision diameter, which is the distance
between the two atoms for which the energy is zero. These two parameters are
depicted in Fig. 7.8b.

Often, the Lennard-Jones functional form of interaction can also be expressed
in terms of the distance between the two atoms for which the energy is minimum,
rmin. This is calculated by equalising to zero the derivative of the energy (Eq. (7.46))
with respect to the separation rij and solving for rij . This yields an expression for
rmin = 21/6σ , then Eq. (7.46) can be re-written as:

VLJ(rij ) = εij

(
r12
ij,min

r12
ij

− 2
r6
ij,min

r6
ij

)
(7.47)

or

VLJ(rij ) = Aij

r12
ij

− Bij

r6
ij

(7.48)

where the repulsive (Aij = εij r
12
ij,min) and attractive (Bij = 2εij r6

ij,min) coefficients
depend on the type of the interacting atoms i and j . The following rules are often
used:

εij = √
εi · εj (7.49)

rij,min = ri,min + rj,min

2
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Fig. 7.9 The Lennard-Jones
energy (in kcal/mol) for C-C
and O-H non-bounded terms

For example, in Fig. 7.9, we have plotted the Lennard-Jones interaction energy for
C-C and O-H non-bonded terms for which

rC,min = 2.1750 Å; εC = −0.0550

rO,min = 1.7682 Å; εC = −0.1521

rH,min = 0.2245 Å; εC = −0.0460

The 6-12 potential is an excellent choice for rare gases, but may not be for other
systems, such as hydrocarbons. However, it is widely used for large biomolecular
systems due to computational simplicity, since the term r−12 can be very efficient
calculated by taking the square of the term r−6. Moreover, the term r−6 can also be
derived from the square of the distance without the need to calculate the square root
of it, which can be computationally very expensive.

It is interesting to note that other powers can be used as well for the repulsive part
of the potential. For example, the power of 9 and 10 result in less steep curves and
are still used in some force fields. The original form of the Lennard-Jones potential
is given by

v(r) = kε
[(σ

r

)n −
(σ
r

)m]
, k = n

n−m

( n

m

) m

n−m (7.50)

The particular form given by expression (7.46) can be obtained for n = 12 and
m = 6.

7.4.5 Electrostatic Potential

The last term in Eq. (7.1) represents the electrostatic interaction energy between the
non-bonded atoms in the system, which is given using the Coulombic law between
any two charges qi and qj :
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VElec(rij ) = 1

4πε0

qiqj

εrij
(7.51)

where qi and qj represent the partial charges assigned to every atom in the molecule,
ε0 is the permittivity of the free space:

ε0 = 8.8542 × 10−12 C2

N ·m2

Here, rij denotes the distance between the two charges and ε is the dielectric
constant. In Eq. (7.51), the factor

ke ≡ 1

4πε0

is also called Coulomb’s constant, which is introduced to adjust the conversion of
the units from the standard SI units into force field units, namely kcal/mol. Often,
in the common used force fields, the units of the charges are the electrostatic charge
units (esu), which is a unit per electron charge

1 esu = 1
C

1.6 × 10−19 C

It can be found that

ke = 332
kcal

mol
· Å

esu2

Note that because of the 1/rij dependence concerning the distance between
the charges, rij , the electrostatic energy decays slower to zero with increasing the
distance between charges in comparison with Lennard-Jones energy. In Fig. 7.10,
we show the electrostatic energy (in kcal/mol) for the non-bonded interactions O
· · · O and O · · · H of the water molecule. Besides, the electrostatic interactions
are particularly important in the non-bonded interactions of biomolecular systems,

Fig. 7.10 The Coulomb
energy (in kcal/mol) for O
· · · O and O · · · non-bounded
terms
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such as the proteins, DNA, RNA, and their complexes, since they establish the
stability of conformations in the solvent environments. However, the computation
of these interactions requires high efforts during the force and energy calculations.
Typically, the complexity of the electrostatic interactions scales as N2, where N is
the number of charged atoms. To reduce the computation efforts in a calculation
of the electrostatic interactions more sophisticated methods are used in typical
molecular dynamics simulations. Usually, a cutoff radius, Rc, is defined prior to
simulation, typically 10–12 Å, which counts for direct calculations of the short-
range electrostatic interactions (rij ≤ Rc) using the Coulombic form. Then, the
long-range electrostatic interactions (rij > Rc) are computed using fast-electrostatic
interactions algorithms, such as the Ewald and the Particle Mesh Ewald approaches,
which are characterized by a computation complexity O(N) (Ewald 1921; Luty
et al. 1994, 1995; Hardy et al. 2011).

In Eq. (7.51), the dielectric constant plays the role of a reduction of the electro-
static interaction if the charged atoms are placed in a medium different from that of
a vacuum. In other words, the electrostatic interactions occurring in a polarizable
medium are weaker than those in the vacuum. That is due to the screening of the
charges from the permanent dipoles of the medium. Often, a distance-dependent
dielectric constant function is used to characterize the dielectric properties of the
medium, such as:

ε = Dr

where D is a constant.
There also exist other function of the distance dependence dielectric constants,

such as the sigmoidal function (Mehler 1996):

ε(r) = D0 exp (κr) (7.52)

where κ is screening parameter of the ionic strength of the solvent in dimensions of
the inverse of the length and D0 a free parameter. This expression is used to take
into account different ionic concentrations.

Other functions have also been proposed, such as the following distance-
dependent dielectric function (Mehler and Guarnieri 1999):

ε(r) = εw +D0

1 + k exp (−κ(εw +D0)r)
−D0 (7.53)

where εw is the dielectric constant of water, D0 and κ are free parameters, and k is a
fixed constant. These dielectric function forms are mainly used to take into accounts
the decay of the electrostatic interactions when the charges separate at distances of
several Angstroms, which are considered moderate distances, and to obtain a range
of electrostatic interactions in solvent close their values in the vacuum if the charges
are too close to each other.



Chapter 8
Slow Collective Variables
of Macromolecular Systems

This chapter aims to discuss different methods used to determine the frequency
spectrum of the motions in a macromolecular system, namely the normal modes,
principal components analysis, and the time-lagged auto-encoder machine learning
approach. In general, the normal modes method is successfully used to estimate
the force constants, inter-atomic distances, and bond dissociation energies of
molecular structures from the molecular vibrational spectra of small molecules. This
technique, along with the method of the principal components analysis, is often
used to obtain the global motions in the macromolecular systems along the most
emphasized principal components. Whereas, the time-lagged auto-encoder method
is a new method used for determining the slow collective coordinates using the
machine learning approaches, such as artificial neural networks. In this chapter, we
will discuss an improved modified version of the artificial neural network, called
Bootstrapping Swarm Artificial Neural Network. Finally, in this chapter, we are
going to introduce an approach of how to derive the equations of motion in the
reduced essential subspace of the slow collective variables using the harmonic bath
coupling of these variables with the environmental fast degrees of freedom of the
system.

8.1 Normal Modes

The basis for determining the force constants, inter-atomic distances, and bond
dissociation energies of molecular structures are molecular vibrational spectra
of small molecules (Lifson and Warshel 1968). The vibrational bond motions
represent the small deviations from the equilibrium states. In particular, all possible
vibrational motions of a molecule can be characterized as a superposition of
different basic types of vibration (called normal modes). For a molecule of N

atoms, there are 3N degrees of freedom to describe the motion of atoms in a three-
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dimensional space related to atomic coordinates. Omitting the three translational
and three rotational degrees of freedom of the molecule as a whole, then there are
3N − 6 normal modes necessary to describe the internal motion of molecules.

Experimental methods used to detect the vibrational energy levels of a molecule
include the spectroscopic techniques, such as the vibrational absorption of infrared
radiation (IR) and Raman scattering. IR spectroscopy is a powerful technique
that captures information on the transitions between vibrational quantum states
since these transitions lead to absorption and emission of infrared radiation. IR
wavelength is in the range 1–100 μm. IR transitions can occur if there exists a
change in the dipole moment of the molecule during the transition. On the other
hand, Raman spectroscopy, which also captures the transitions between vibrational
levels, occurs when the polarizability of the molecular system changes during the
transition.

These two techniques are considered complementary methods, since some
transitions that have a change in the dipole moment absorb light, and others
have a change in polarizability and scatter light. For small symmetric molecules,
the observed transitions are complementary, whereas, for large and asymmetric
molecules, both, Raman and IR spectra are mostly the same.

The units of normal modes are hertz (Hz), that is, the inverse of seconds.
However, often they are also reported in wavenumbers, that is, the number of
waves per centimeter. Higher the frequency, more energetically expensive is the
deformation along that particular mode. For example, bond-stretching modes have,
in general, higher frequencies than angle-bending modes, which in turn have higher
frequencies than torsion angle modes.

8.1.1 General Theory of Normal Modes

Based on the description in Goldstein (2002), if we consider a conservative system
in which the potential energy is a function of coordinates only, the equilibrium state
of the system is characterized by

Qi = −
(
∂V

∂qi

)

0
(8.1)

where q1, q2, · · · , qf are the generalized coordinates of the system, which do not
involve the time explicitly. Equation (8.1) indicates that potential energy has an
extremum at the equilibrium configuration of the system, q01, q02, · · · , q0f . If the
system is initially at the equilibrium position, with zero initial velocities (q̇i), then
the system will continue in equilibrium indefinitely. An equilibrium position is
classified as stable if a small disturbance of the system from equilibrium produces
only a small bounded motion about the equilibrium position. The equilibrium is
unstable if a small disturbance will eventually result in an unbounded motion. For
example, a pendulum at rest is in stable equilibrium, but the egg that is standing on
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an end is an unstable equilibrium (Goldstein 2002). Following the discussion, when
the extremum of V is a minimum, the equilibrium is a stable one. That is, if the
system is at equilibrium and it has deviated from this position, then this disturbance
will produce an increase in energy by an amount of dE above the equilibrium value
V . Since the system is conservative, based on the conservation law of energy, the
velocities must then decrease and with time become zero, which is a bound motion.
On the other hand, if V decreases due to a deviation from equilibrium, the velocities
(and so the kinetic energy) increase indefinitely, resulting in an unbounded motion.

Now, we consider the motion of the system close to the configuration of stable
equilibrium. Because the deviations from the equilibrium are too small, we can
expand the potential energy function in the Taylor series about the equilibrium and
keeping only the lowest-order energy terms:

V (q1, · · · , qf ) = V (q01, · · · , q0f )+
(
∂V

∂qi

)

0
ηi + 1

2

(
∂2V

∂qi∂qj

)

0
ηiηj + · · ·

(8.2)

where ηi = qi − q0i is the deviation of the generalized coordinate from the
equilibrium position and the usual summation convention is used. Terms linear in
ηi vanish automatically due to equilibrium conditions. The first term in the series is
the potential energy of the equilibrium position, and by shifting the arbitrary zero of
potential to be the equilibrium minimum potential energy value, then

V (q1, · · · , qf ) = 1

2

(
∂2V

∂qi∂qj

)

0
ηiηj = 1

2
Vij ηiηj (8.3)

where the second derivatives of V have been denoted by Vij depend only on the
equilibrium values of the qi . Based on the definition, it can be seen that Vij are
symmetric, Vij = Vji .

The kinetic energy is written as the following summation:

T = 1

2

∑

i,j

mij q̇i q̇j = 1

2

∑

i,j

mij η̇i η̇j (8.4)

where the mass coefficients mij are in general functions of the coordinates qk , but
they may be expanded in a Taylor series about the equilibrium configuration:

mij (q1, · · · , qf ) = mij (q01, · · · , q0f )+
∑

k

(
∂mij

∂qk

)

0
ηk + · · ·

Denoting the values of mij at equilibrium as Tij , we get an alternative expression
as:

T = 1

2

∑

i,j

Tij η̇i η̇j (8.5)

where Tij is symmetric, Tij = Tji .
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The Lagrangian of the system is:

L = 1

2

∑

i,j

Tij η̇i η̇j − 1

2

∑

i,j

Vij ηiηj

Applying the Lagrangian’s equations of motion, we get the following equations of
motion:

f∑

j=1

(
Tij η̈j + Vijηj

) = 0 (8.6)

for i = 1, · · · , f .
The equations of motion (Eq. (8.6)) are linear differential equations with constant

coefficients. The real part of the general form of the solution is given by

ηj =
f∑

k=1

Ajkαk cos(ωkt + δk) (8.7)

where Ajkαk is the real amplitude of the oscillation for each coordinate ηj . Then,
the second derivative of Eq. (8.7) with respect to time is

η̈j = −
f∑

k=1

Ajkαkω
2
k cos(ωkt + δk)

Substituting this expression and the expression given by Eq. (8.7) into Eq. (8.6), we
get

f∑

j=1

⎛

⎝−Tij

f∑

k=1

Ajkαkω
2
k cos(ωkt + δk)+ Vij

f∑

k=1

Ajkαk cos(ωkt + δk)

⎞

⎠ = 0

(8.8)
or

f∑

k=1

⎡

⎣
f∑

j=1

−TijAjkω
2
k +

f∑

j=1

VijAjk

⎤

⎦αk cos(ωkt + δk) = 0 (8.9)

This equation holds for all time t if

⎛

⎝
f∑

j=1

TijAjk

⎞

⎠ω2
k =

f∑

j=1

VijAjk (8.10)
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for k = 1, 2, · · · , f . By introducing the matrices, T with elements Tij , V with
elements Vij , A with elements Ajk and the diagonal matrix Λ with diagonal
elements Λkk = ω2

k , we can write Eq. (8.10) in a matrix form as

TAΛ = VA (8.11)

Following Levitt et al. (1985), before we determine Λ and A by solving Eq. (8.11),
a normalisation condition is established. For that Qk is defined as

Qk = αk cos(ωkt + δk)

Then Eq. (8.7) is written as

ηj =
f∑

k=1

AjkQk ≡ AQ (8.12)

where Q is a vector with elements Qk . This expression gives a relation between the
generalised coordinates η and the coordinates Q. Then, the potential energy and the
kinetic energy can be written as

V = 1

2
QT AT VAQ (8.13)

T = 1

2
Q̇T AT TAQ̇

By choosing the normalisation condition as (Levitt et al. 1985)

AT TA = 1 (8.14)

then, the kinetic energy can be written as

T =
f∑

k=1

1

2
Q̇2

k ≡
1

2
Q̇T Q̇

If we multiply both sides of Eq. (8.11) by AT and using the normalisation condition,
Eq. (8.14), we get

Λ = AT VA = AT TAΛ (8.15)

Thus, the potential energy can be written as

V = 1

2
QT ΛQ = 1

2

f∑

k=1

ΛkkQ
2
k =

1

2

f∑

k=1

ω2
kQ

2
k
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It can be seen that both potential and kinetic energy are simple sums of squares of
coordinates Qk and its time derivative q̇k , hence the coordinates Qk are normal
coordinates and mass scaled one, which is indicated by the form of the kinetic
energy.

8.1.2 Dynamical Behavior of System

We can search for solution of Eq. (8.11) using the normalization condition,
Eq. (8.14), using standard methods. Then, the dynamics of the system are
characterized by equation

ηj =
f∑

k=1

Ajkαk cos(ωkt + δk)

or

qj = q0j +
f∑

k=1

Ajkαk cos(ωkt + δk) (8.16)

where δk is the phase of the k-th normal mode of motion, and ωk is an angular
frequency which is determined as: ωk = √

Λkk . In general, ωk , αk and δk will
depend on the initial positions and velocities at t = 0.

For the Eq. (8.16) to be applied, we first need to determine q0, which represents
the coordinates at the thermodynamic equilibrium state. The thermodynamic equi-
librium state is the configuration for which the potential energy of the system has a
minimum value, which can be determined using numerical methods for minimizing
general functions (Andricioaei and Straub 1996b, 1998).

As it has been suggested elsewhere (Levitt et al. 1985), the derivative of
the potential energy with respect to generalized coordinates, ∂V/∂qj , should
be calculated analytically, then the elements Vij of the matrix V are calculated
numerically as

Vij = 1

ε

[(
∂V

∂qi

)

qj=q0j+ε

−
(
∂V

∂qi

)

qj=q0j

]
(8.17)

For calculation of the matrix T, one can start with expression of the kinetic energy
in terms of the time derivative of the Cartesian coordinates:

T = 1

2

f∑

i=1

mi ṙi
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Then, small changes of the Cartesian coordinates δri can be expressed in terms of
the small changes on the generalized coordinates δqi as

δri =
f∑

k=1

∂ri
∂qk

δqk

Assuming that these small changes occur in time interval δt , then

ṙi =
f∑

k=1

∂ri
∂qk

δqk

δt
=

f∑

k=1

∂ri
∂qk

q̇k

Thus, the kinetic energy can be written as

T = 1

2

f∑

i=1

mi

f∑

k=1

∂ri
∂qk

q̇k

f∑

j=1

∂ri
∂qj

q̇j (8.18)

= 1

2

f∑

k=1

f∑

j=1

⎛

⎝
f∑

i=1

mi

∂ri
∂qk

· ∂ri
∂qj

⎞

⎠ q̇kq̇j

= 1

2

f∑

k=1

f∑

j=1

Tjkq̇kq̇j

where Tjk are given as:

Tjk =
f∑

i=1

mi

∂ri
∂qk

· ∂ri
∂qj

Since the kinetic energy should include the overall translational and rotational
kinetic energy, when calculating ∂ri/∂qk , the coordinate ri must be calculated
before the overall translational and rotational degrees of freedom are removed from
the system.

The algorithm for calculation of normal modes includes the following steps:

(1) Define the Cartesian coordinates as a function of the generalized coordinates
qi .

(2) Minimize the potential energy with respect to the coordinates qi to determine
q0i .

(3) Calculate the matrices V and T using Eqs. (8.17) and (8.18).
(4) Solve equations of motion given by Eq. (8.11) with respect to A and Λ.
(5) Express the motion of the generalised coordinates q in terms of the normal

coordinates Q using Eqs. (8.12) and (8.16).
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8.1.3 Time Averaged Properties

The trajectory of every atomic motion depends on the initial conditions, positions
and velocities, which determine the amplitude αk and phase δk of each normal mode.
Time averaged properties along the trajectory depend only on the amplitudes αk and,
thus, are of more general importance. For example, let Δpi be some property of the
system along the i-th degree of freedom that is a linear function of the change in the
generalized coordinate Δqk:

Δpi =
f∑

j=1

PijΔqj

Then, the correlation coefficients of that property between two different degrees of
freedom of the system i and j is

〈Δpi(τ)Δpj (τ)〉 =
f∑

k=1

f∑

m=1

PikPjm〈Δqk(τ)Δqm(τ)〉 (8.19)

= 1

2

f∑

n=1

f∑

k=1

f∑

m=1

PikPjmAknAmnα
2
n

= 1

2

f∑

n=1

P ′
inP

′
jnα

2
n

where

P ′
in =

f∑

k=1

PikAkn (8.20)

P ′
jn =

f∑

m=1

PjmAmn

8.1.4 Thermal Amplitudes

The amplitude αk for every normal mode k depends on the temperature T (Levitt
et al. 1985). The average potential energy of every normal mode is

〈V 〉k = 1

2
ω2
k〈Q2

k(τ )〉
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= 1

2
ω2
kα

2
k 〈cos2(ωkτ + δk)〉

= 1

4
ω2
kα

2
k

= 1

2
kBT

for classical dynamics. Thus,

〈Q2
k(τ )〉 = kBT /ω

2
k

where 〈Q2
k(τ )〉 is the classical mean square fluctuation of Qk . Moreover,

αk =
√

2kBT

ω2
k

Hence, since all the time averaged properties depend on α, they also depend on the
temperature T .

8.2 Principal Components Analysis

The principal component analysis (PCA) (Karhunen 1947) has often been used to
reduce the number of degrees of freedom of the biomolecular systems from the MD
simulations (Brooks et al. 1995), also known as quasi-harmonic analysis (Karplus
and Jushick 1981; Ichiye and Karplus 1991). In addition, the method has been
employed to describe molecular dynamics trajectories in terms of a small number of
variables, namely essential degrees of freedom, responsible for all relevant structural
transitions in these molecules (Go 1990; Kitao et al. 1991; Garcia 1992; Amadei
et al. 1993; Aalten et al. 1993), obtained as the directions with significant non-
zero eigenvalues calculated from the covariance matrix of the atomic position
fluctuations of the MD trajectory (Amadei et al. 1993). As such, the PCA method
is proposed as a method for reducing the phase space of proteins for long-time
molecular dynamics (Grubmüller 1995). In PCA, we can determine a small number
of essential modes and then project equations of motion on the resulting low-
dimensional phase space to obtain a new smaller set of the differential equations
on the reduced phase space (Lange et al. 2006; Stepanova 2007; Kamberaj 2011),
which have the form of well-known generalized Langevin equation (Albers et al.
1971).

The detailed algorithm for PCA is as the following, according to Janezic and
Brooks (1995) and Brooks et al. (1995) and, in particular, to Kamberaj (2017).
First, we have to remove the translational and rotational motions of all system,
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then the structure of a system of N atoms at each time step of the MD trajectory
is represented by single vector

q(t) = (q1(t), q2(t), · · · , q3N(t))T

where

qi(t) ≡ qi(t)− 〈qi(t)〉, (i = 1, 2, · · · , 3N)

are representing the fluctuations of atomic positions. These representative points
are distributed in the phase space during a MD trajectory production. Based
on the quasi-harmonic approach (Karplus and Jushick 1981), the distribution of
the fluctuations of the coordinates can be described by a multivariate Gaussian
distribution with covariance matrix σ defined as

σij = 〈qi(t)qj (t)〉

where 〈· · · 〉 denotes an ensemble average. The covariance matrix can also be
expressed in terms of the mass weighted coordinates,

q̃i (t) = √
miqi(t)

to obtain the mass weighted covariance matrix as

σ̃ij = √
mimj 〈qi(t)qj (t)〉

Both, σ̃ and σ are 3N × 3N symmetric matrices, which are then diagonalised to
obtain a new set of coordinates,

X = (x1, X2, · · · , X3N)T

which are given as

Xj =
3N∑

i=1

Eijqi

with E being the orthogonal matrix whose i-th column is the i-th eigenvector of σ̃ ,
which are also called principal components (PC). The eigenvalues of σ̃ , λi represent
the mean-square fluctuations along each principal axis:

λi = 〈X2
i (t)〉 = eTi σ̃ei

where ei is the i-th eigenvector of σ̃ .
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In the coarse-grained model, M coordinates are selected (Grubmüller 1995) with
the largest eigenvalues, namely

c(t) = (X1(t), · · · , XM(t))T

These coordinates are called collective coordinates. This choice is based on the
observation that the remaining Xi (i = M + 1, · · · , 3N ) with small eigenvalues
describe localized, high frequency, nearly harmonic vibration modes with small
amplitudes, which are expected not to reflect the conformational transitions. In
contrast, the dynamics of M conformational coordinates is slow, essentially non-
harmonic and it is known to dominate the collective motion in proteins (Go 1990;
Kitao et al. 1991; Garcia 1992; Amadei et al. 1993; Aalten et al. 1993; Grubmüller
1995). Therefore, it is assumed that with this choice we capture the relevant degrees
of freedom of the protein dynamics. The number M of the conformational degrees
of freedom, which are explicitly considered, will determine the level of coarse-
graining.

8.2.1 Diffusive Motion in a Protein

The diffusive motion in proteins is described here by the Green-Kubo expression,
which relates the correlation function integrals to the transport coefficients (Balu-
cani and Zoppi 1994):

Dm(t) = 1

d

τ∫

0

dτ 〈Vm(t0)Vm(t0 + τ)〉t0

where V denotes the velocity vector of the collective coordinates

V = (ċ1, · · · , ċM)T (8.21)

d is the dimension and 〈· · · 〉t0 denotes an ensemble average over many starting times
t0 and t is the MD simulation time. In Eq. (8.21), the term

CVV
m (t) = 〈Vm(t0)Vm(t0 + τ)〉t0

represents the velocity auto-correlation function.
A double diffusion model (Amadei et al. 1999a), is used to characterize

diffusive motion of collective coordinates, that is, short time diffusion D0 within
a configuration space region which can be approximated by a single harmonic well,
followed by a diffusion between harmonic well regions that can be approximated by
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a long time diffusion constant D∞. In this model a theoretical curve can be used to
model the short time decay of the negative tail of the auto-correlation function

C
f it
V V (t) = C0 exp

(
− t − τ0

τc

)
(8.22)

where τ0 corresponds to fast relaxation time, i.e. the time when first CVV (t) is
negative, τc is the slow relaxation time and C0 is a constant. Equation (8.22) is
valid only for t ≥ τ0. Integrating expression (8.22), a general expression for the
double diffusion model is found (Amadei et al. 1999a):

Df it (t) = (D0 −D∞) exp

(
− t − τc

τc

)
+D∞ (8.23)

which similarly is valid only for t ≥ τ0. In Eq. (8.23), the first term describes the
short time diffusion and D∞ the long-time diffusion constant, and D0 > D∞.
First τ0 can be defined from CVV (t) as the time when it first becomes negative,
then using a nonlinear least squares fitting procedure of D(t), τc and D∞ can be
calculated (Kamberaj 2011). The short time diffusion coefficient is calculated as
D0 = D(τc).

8.2.2 Stability of PCA

To measure the fraction of the atomic fluctuations captured by a given subset of the
principal components, e.g. {ei}, the quantity Γ (M) is used as proposed in Lange
and Grubmüller (2006)

Γ (M) = 〈|| P(q) ||2
|| q ||2 〉 (8.24)

where || · || denotes the norm of the vector. || P(q) || is given as

|| P(q) ||=
(

M∑

i=1

X2
i

)1/2

and

|| q ||=
(

3N∑

i=1

X2
i

)1/2
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The full-length trajectory is divided into time windows with length, let say Tw, then
the subspaces from these time windows are computed to obtain measures of the
similarity, Γi(M). The similarity can then be defined as an average over all number
of the time windows, Nw:

〈Γ (M)〉 = 1

Nw

Nw∑

i=1

Γi(M) (8.25)

The standard deviation of the similarity is estimated as (Lange and Grubmüller
2006)

σΓ (M) =
(

1

Nw − 1

Nw∑

i=1

(Γi(M)− 〈Γi(M)〉)2

)1/2

(8.26)

Note that on writing Eqs. (8.25) and (8.26) we have assumed that all subspaces
are equivalent, that is, they have the same statistical weights. But this should depend
on the length of the time window of each fragment. To examine the convergence of
similarity on each time window, we considered it, both as a function of trajectory
length t and subspace dimension M , Γ (t,M), where

t = Tw, 2Tw, · · · , T

with T being the length of full trajectory and M = 1, 2, 3, · · · .
The convergence establishes for sufficiently large PCA subspaces. Besides, this

convergence is obtained only if a relatively long MD simulation is obtained, which
is not always available. However, in the context of our discussion, the quality of
the chosen PCA subspace has to be established based on the short run of MD
simulations available (Lange and Grubmüller 2006). The inner product matrix P
discussed elsewhere (Amadei et al. 1993) is a good alternative for comparing the
basis vectors of two subspaces. However, the disadvantage of it is that all directions
are weighted equally, which is not the case when measuring Γ because in the last
one the ensemble average ensures that less essential directions of the subspace also
have less contribution to Γ .

Lange and Grubmüller (2006) suggested to compute the mutual similarity Γ̃ for
two adjacent fragments of equal length: a PCA was carried out for the first fragment,
and the similarity is calculated, with the ensemble average 〈· · · 〉 replaced by an
average overall configuration of the second fragment. This measure, Γ̃ , as well as
the similarity, Γ , itself, depends on the chosen subspace dimension M and will
never reach unity. Instead, this measure allows one to judge how accurate a PCA
subspace of a particular dimension might describe the right ensemble.

Usually, PCA is carried out on subsets of the protein atoms, such as Cα or
backbone atoms.
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8.3 Equations of Motion of Collective Coordinates

In this section, we will derive a smaller set of the differential equations from the
projections of the main dynamics equations of motion of a system. In general,
these equations can be used to describe the dynamics of the so-called collective
coordinates X similar to Newton’s equations describing the motion of y coordinates,

mÿ = −∂U(y)
∂y

(8.27)

Here, m represents a diagonal matrix of the particle masses along each degree of
freedom and U(y) is the potential energy function of y. The projection of the force
can be written as:

Fy =
(
− ∂U

∂y1
,− ∂U

∂y2
, · · · ,− ∂U

∂y3N

)T

This force is acting along each of the degrees of freedom of the system, determined
by the eigenvectors of the correlation matrix C as

FX̃ = −ET ∂U

∂y
= ET mÿ, (8.28)

where the relation given by Eq. (8.27) is used. Besides, we can write that

FX̃ = M̃eff ¨̃X

where M̃eff is an effective mass matrix. It can easily be shown using the relation
X = ET y that we can express this effective mass matrix as

M̃eff = ET mE. (8.29)

In this form, M̃eff is not diagonal matrix, but it is completely determined in terms
of the diagonal matrix representing the particles’ masses and principal components
of the correlation matrix. Hence, there exist a reference frame, where the effective
mass matrix is a diagonal matrix. Note that if all the real degrees of freedom of
system have the same mass, which is often the case,1 then the effective mass matrix,
M̃eff, is diagonal by definition. Moreover, to have a diagonal effective mass matrix,
M̃eff, it is also suitable from the computations point of view, as it will be shown
in the following. Denoting V a 3N × 3N orthogonal matrix of eigenvectors, which
represents the space in which M̃eff is diagonal, we can obtain

1This could be the case when, for example, only the Cα atoms are considered in the PCA.
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Meff = VT M̃effV,

Now, Meff is a diagonal matrix, where each diagonal element corresponds to the
effective mass of the coordinate X̃i , (i = 1, 3N ). Here, of course, we consider
only M of the principal components, corresponding to the largest eigenvalues of the
correlation matrix C, and hence only the first M diagonal elements of Meff are taken
into account. Besides, we project the collective coordinates vector X on the principal
frame of the matrix M̃eff, which is denoted as X ≡ VT X. Here, we consider the first
M columns of VT only.

In general, in the PCA analysis, we consider a smaller number of the degrees
freedom (M � 3N ), called here collective coordinates. These collective coordi-
nates can be used to characterize the collective motion of the macromolecules, such
as a protein, and they determine the essential subspace of the macromolecules – the
degrees of freedom coupled to the other system’s degrees of freedom. For example,
if a macromolecule immerses in a solvent environment, then the solvent degrees of
freedom and the slow degrees of freedom of the macromolecule from the so-called
environmental degrees of freedom.

In the following, we will present a harmonic bath model (Kamberaj 2011), which,
in general, can be employed to describe the weak coupling to the environmental
degrees of freedom (Benguria and Kac 1981; Ford and Kac 1987; Ford et al. 1988;
Hänggi and Ingold 2005). We will apply the classical framework, and we will show
that based on this formalism we can derive the so-known generalized Langevin
equation (Benguria and Kac 1981; Ford and Kac 1987; Ford et al. 1988).

8.3.1 Bath of Harmonic Oscillators

According to this approach, all the other degrees of freedom named here environ-
mental degrees of freedom, coupled with the essential degrees of freedom, represent
slow degrees of freedom of the system and the solvent degrees of freedom. A set
of harmonic oscillators here replaces them. Let us consider X1, · · · , XM degrees of
freedom of interest, coupled linearly to the bath, then the Hamiltonian of this system
is written in the form

H =
M∑

m=1

P 2
m

2Meff
m

+ U(X1, · · · , XM)

+
∑

i

[
p2
i

2mi

+ Kix
2
i

2
+

M∑

m=1

(
Γi,mxiXm + μi,mX

2
m

2

)]
, (8.30)

In Eq. (8.30), the first two terms represent the kinetic and the potential energy
function of the collective coordinates. While the other terms, namely the third,
fourth and fifth, represent the kinetic and the potential energy of the bath (the index i
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runs over all the harmonic oscillators), and the linear coupling between the collective
coordinates and the bath of the harmonic oscillator, respectively. The last term, in
Eq. (8.30), represents the potential energy of the collective coordinates in the bath
environment. In Eq. (8.30), Pm denotes the conjugate momentum of Xm, pi is the
conjugate momentum of the harmonic oscillator coordinate xi , mi is the harmonic
oscillator mass, and Ki is the force constant of the harmonic oscillator, related to the
harmonic frequency, ωi as ω2

i = Ki/mi . Γi,m is the coupling constant between the
bath and the coordinate Xm and μi,m is the force constant of the harmonic potential
energy of the collective coordinate in the bath, for which we will give an explicit
expression in the following discussion.

The equations of motion will be obtained by solving the Hamilton’s equations of
motion represented in Chap. 1

Q̇ = ∂H

∂P
, Ṗ = −∂H

∂Q
(8.31)

Here, P is the conjugate momentum of the canonical coordinate Q. Using the
harmonic bath Hamiltonian, Eq. (8.30), the equations of motion can be written as:

Ẋm = Pm/M
eff
m ,

Ṗm = − ∂U

∂Xm

−
∑

i

(
Γi,mxi + μi,mXm

)
,

ẋi = pi/mi,

ṗi = −Kixi −
M∑

m=1

Γi,mXm. (8.32)

As the second derivatives, respectively Ẍm and ẍi , the equations of motion
(Eq. (8.32)) can be written as

Meff
m Ẍm = − ∂U

∂Xm

−
∑

i

(
Γi,mxi + μi,mXm

)
,

miẍi = −Kixi −
M∑

m=1

Γi,mXm. (8.33)

In general, the system of the equations given by Eq. (8.33), can be solved in this
way: first, solving the second equation with respect to xi , and then replacing it into
the first differential equation that will give a second order differential equation with
respect to Xm.

The second order differential equation with respect to xi (see Eq. (8.33))
represents a driven undamped classical harmonic oscillator equation. In Kamberaj
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(2011), it is suggested to solve it by taking the Laplace transform of both sides
giving:

(s2 + ω2
i )x̃i (s) = sxi(0)+ ẋ(0)−

M∑

m=1

Γi,m

mi

X̃m(s) (8.34)

Here, x̃i (s) and X̃m(s) are the Laplace transforms of xi(t) and Xm(t), respectively.
Dividing both sides by s2 + ω2

i and taking the inverse Laplace transform, the
solution, xi(t), of the Eq. (8.34) with respect to time t can be obtained as (Kamberaj
2011):

xi(t) = xi(0)

∞∫

0

sest

s2 + ω2
i

ds + ẋi (0)

∞∫

0

est

s2 + ω2
i

ds (8.35)

−
M∑

m=1

Γi,m

mi

∞∫

0

X̃m

s2 + ω2
i

ds.

Using the convolution theorem of the Laplace transform as:

∞∫

0

e−st dt

t∫

0

f (τ)g(t − τ)dτ = f̃ (s)g̃(s),

we can obtain an expression for xi(t) as (Kamberaj 2011)

xi(t) = xi(0) cosωit + ẋi (0)

ωi

sinωit (8.36)

−
M∑

m=1

Γi,m

miωi

t∫

0

dτXm(τ) sinωi(t − τ).

The friction kernel can also be obtained as a function of the velocity Ẋm by writing

t∫

0

dτXm(τ) sinωi(t − τ) = 1

ωi

[Xm(t)−Xm(0) cosωit (8.37)

−
t∫

0

dτẊm(τ) cosωi(t − τ)

⎤

⎦ .

and then xi(t), given by the Eq. (8.36), into the first expression of Eq. (8.33) and
taking μi,m ≡ λ2

i,m/(miω
2
i ) (Kamberaj 2011). These manipulations yield a second

order differential equation for Xm in this form
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Meff
m Ẍm = − ∂U

∂Xm

−
t∫

0

dτẊm(τ)ξm(t − τ)+ Rm(t), (8.38)

where

ξm(t) =
∑

i

Γ 2
i,m

miω
2
i

cosωit, (8.39)

is the so-called dynamic friction kernel and

Rm(t) = −
∑

i

Γi,m

[(
xi(0)+ Γi,m

miω
2
i

Xm(0)

)
cosωit (8.40)

+ pi(0)

miωi

sinωit,

]

is the so-called random force (Kamberaj 2011). Equation (8.38) is the so-called
generalized Langevin equation in the literature (Benguria and Kac 1981; Ford and
Kac 1987; Ford et al. 1988). Note that this equation for each coordinate Xm, see also
Eq. (8.38), represents the dynamics of an one-dimensional particle moving under the
force − ∂U

∂Xm
, driven by the random force Rm(t) with a non-local in time dumping

term − ∫ t

0 dτẊm(τ)ξm(t − τ), which depends on entire history of Xm.
The random term force Rm(t) under the context of the formalism discussed here

depends completely on the dynamics of the bath. However, for a large bath with
many degrees of freedom, it might not be interesting following the trajectory in the
phase space of all degrees of freedom, then we can define Rm(t) as a random force.
The stochastic behavior of the Rm(t) can also be interpreted from the fact that it
depends on the initial values of xi(0) and Xm(0), Eq. (8.40). Hence, we can model
Rm(t) as a random process satisfying certain conditions. From the expression of
Rm(t), Eq. (8.40), we see that Rm(t) does not depend on the Xm(t), except at t = 0,
Xm(0).

It can easily be found that

〈Ẋm(0)Rm(t)〉 = 0,

where 〈· · · 〉 denotes the ensemble average. This correlation arises from the fact that
Rm(t) does not depend on Ẋm(0). It can also be seen that

〈Rm(0)Rm(t)〉 = kBT ξm(t),

where kB is the Boltzmann’s constant and T is the temperature of the system, which
is the well known fluctuation dissipation theorem.
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The friction kernel term
∫ t

0 dτẊm(τ)ξ(t−τ), which is also called memory kernel
function since it depends on the time evolution of Xm. That, in physics terms,
indicates that the bath requires a finite time to respond to any changes on the motion
of the collective coordinate (Xm), which in turn indicates how the bath acts back to
the system. Thus, the force of the bath upon the Xm depends on what the coordinate
Xm did on the past. However, we expect that fluctuations of Ẋm with time decay
fast to zero after a certain interval of time τ0. Hence, what the coordinate did earlier
that τ0 will no longer affect the force acting on it, and the integral can be written as∫ t

τ0
dτẊm(τ)ξm(t − τ). That indicates that also the kernel function ξm(t) decays to

zero with time. Next section shows that ξm exhibits a power law decay to zero.
We can consider two separate cases for the time behavior of the kernel function

or dynamical friction coefficient ξm(t). The first we consider the case when the bath
responds infinitely quickly to any changes on the motion of the coordinate Xm,
which can be seen as the case when Meff

m � mi . Then the bath retain no memory to
what the coordinate Xm did on the past, and we can take the kernel function to be
δ-function in time

ξm(t) = 2ξ0,mδ(t),

where ξ0,m is the static friction coefficient and is defined as

ξ0,m =
∫ ∞

0
ξm(t)dt. (8.41)

The friction kernel term becomes

t∫

0

dτẊm(τ)ξm(t − τ) = 2ξ0,m

t∫

0

dτẊm(τ)δ(t − τ) = 2ξ0,mẊm(t),

and Eq. (8.38) can be written as

Meff
m Ẍm = − ∂U

∂Xm

− 2ξ0,mẊm + Rm(t), (8.42)

which is known as the Langevin equation and it is often used to describe Brownian
motion (Coffey et al. 1996).

The second case would be the case of a bath which responds slowly to the
fluctuations of the coordinate Xm, i.e. mi � Meff

m . In this case we can write
ξm(t) = ξm(t = 0), which is constant all the time. Then the friction kernel integral
becomes

t∫

0

dτẊm(τ)ξm(t − τ) = ξm(0) (Xm(t)−Xm(0)) ,
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and the Eq. (8.38) can be written as

Meff
m Ẍm = − ∂

∂Xm

(
U + 1

2
ξm(0) (Xm(t)−Xm(0))

2
)
+ Rm(t). (8.43)

As one can see, the friction term is added to the potential energy function as a
harmonic term, which has the effect of trapping the system in a local configuration
space. As one can see, this case does not show any practical interest. In terms of
the dynamical behavior of the collective coordinate Xm, it indicates that the motion
between different potential wells has a very long relaxation time.

In the following, we are presenting a method for determining the dynamic friction
as in Kamberaj (2011).

8.3.2 Dynamic Friction Coefficient

To calculate the dynamic friction coefficient ξm(t), we use the Eq. (8.38) and the
auto-correlation functions of the collective coordinates velocity, namely V. First,
we multiply both sides of the Eq. (8.38) by Vm(0) and take the ensemble average.
This yields:

Meff
m 〈Vm(0)V̇m(t)〉 = −〈Vm(0)

∂U

∂Xm

〉 −
t∫

0

dτ 〈Vm(0)Vm(τ)〉ξm(t − τ) (8.44)

+ 〈Vm(0)Rm(t)〉

which can further be written as

Meff
m Ċm

VV (t) = Cm
FV (t)−

t∫

0

dτCm
VV (τ)ξm(t − τ), (8.45)

since 〈Vm(0)Rm(t)〉 = 0, as shown above. In Eq. (8.45), Cm
VV denotes the velocity

auto-correlation function and Cm
FV is the cross-correlation function between the

force (−dU/dXm) and the velocity (Vm). The potential of the mean force, U(Xm) is
determined from the equilibrium distribution function of the system by integrating
out all degrees of freedom, except the coordinate Xm, i.e., (Frenkel and Smit 2001)

e−U(Xm)/kBT = p(Xm) (8.46)

= 1

Z0

∫ ∫
dPdX e−H(X,P)/kBT δ(Xm − X̃(XP)),
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Here, p(Xm) is the equilibrium distribution function of the coordinate Xm, Z0 is
the partition function, and δ(X) is the Dirac-delta function, which guarantees that
the integrand in Eq. (8.46) is non-zero only when the coordinate X has the desired
value, i.e., X̃(X,P) = Xm.

The equilibrium MD simulations enable calculation of the equilibrium distribu-
tion function p(Xm). It is often taken to be proportional to the logarithm of the
binned histogram of the coordinate Xm sampled along the MD trajectory, and hence
the potential of mean force is given by Kamberaj (2011)

U(Xm) = −kBT ln (p(Xm)) . (8.47)

Note that the equilibrium MD simulations sample only a restricted region of the
coordinate Xm domain of interest, usually within the vicinity of the potential of
mean force minimum, and the direct application of Eq. (8.46) is, in practice, a
crude approximation. To properly sample the regions of the phase space, which are
energetically more difficult to reach, we may need to guide the system towards those
regions by employing more accurate methods, as discussed in Park and Schulten
(2004). Besides, Eq. (8.47) gives, in fact, the Gibbs free energy, G, in constant
N, P, T MD simulations, which is related to the potential energy according to
G = U − T S (if we ignore the fluctuations of the term pV), where S is the entropy
and T the temperature. Our approximation, ∂U/∂X = ∂G/∂X is valid only in the
cases when the entropy changes very slowly with X, and hence the term T S is to a
good approximation a constant.

Calculating the correlation functions from MD simulations and substituting them
into the integral Eq. (8.45), followed by numerical integration, gives ξm(t). Alter-
natively, one can evaluate the Laplace transformation of both sides of Eq. (8.45),
giving

ξ̃m(s) = −
Meff

m

(
sC̃V V (s)− CVV (0)

)
− C̃FV (s)

C̃V V (s)
(8.48)

Here, ξ̃m(s), C̃V V (s) and C̃FV (s) denote the Laplace transformations of ξm(t),
CVV (t) and CFV (t), respectively. Then, ξm(t) can be solved via Laplace inversion,
which exists if C̃V V (s) �= 0.

To calculate the static friction coefficient ξ0,m, we can consider the integral given
by Eq. (8.41) as a function of time and taking its limit for t → ∞

ξ0,m = lim
t→∞

t∫

0

dτξm(τ). (8.49)

Alternatively, one can use the Einstein diffusion equation (Einstein 1926; Chan-
drasekhar 1949; Islam 2004), which relates the diffusion coefficient, Dm, of the
collective coordinate Xm with ξ0,m as
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Dm = kBT /ξ0,m. (8.50)

Moreover, one can use the Green-Kubo equation relating the integrals of the
correlation function to the transport coefficients (Balucani and Zoppi 1994):

Dm = 1

d
lim
t→∞

t∫

0

dτ 〈Vm(t0)Vm(t0 + τ)〉, (8.51)

where d is the number of diffusion dimensions. Equation (8.51) can be derived from
the Einstein formula (Einstein 1926), which relates the diffusion coefficient with the
average square displacement of Xm as

Dm = 1

2d
lim
t→∞

1

t
〈| Xm(t0 + t)−Xm(t0) |2〉, (8.52)

In both, Eqs. (8.51) and (8.52), 〈· · · 〉 denotes an ensemble average over many
starting times t0 and t is the time length of the molecular dynamics trajectory.
Recently, diffusion calculation results have been presented for Lennard-Jones
liquids (Yulmetyev et al. 2003; Mokshin et al. 2005). It is interesting to note that
Eqs. (8.51) and (8.52) are valid for the limit of long simulation run (t → ∞).
Therefore, Dm cannot be calculated locally in time (short trajectory), but only
globally, i.e. the molecular dynamics simulations of the system have to run for a
very long time to capture all possible correlations between slow and fast modes on
the system.

Equation (8.51) or Eq. (8.52) describes the relations between the diffusion
and velocity auto-correlation function or with the mean square displacement in
the case of the simple diffusion models, where CVV (t) is a rapidly decreasing
function converging to zero within an approximate time interval of τc. Furthermore,
the integral in Eq. (8.51) in a typical simple model of diffusion is a rapidly
increasing function converging to a positive value reached at a time interval of
τc. Kamberaj (2011) noticed that the velocity auto-correlation functions of the
collective coordinates show a double long-time decay behavior. First, there was a
fast decrease to a negative value within a short time interval of τ0, then a slow
decay to zero of a negative tail for a longer time interval of τc. Note that the
dense liquids also show this slowly decaying negative tail of the velocity auto-
correlation function (Wainwright et al. 1971; Gallo et al. 2000), and the same
behavior is also observed in describing the kinetics of the essential subspace of
protein motion (Amadei et al. 1999b).

According to the harmonic bath model, described in the previous section, the
short-time decay to zero of the negative tail of CVV can be interpreted as a slowing
force acting on the collective coordinates, X1, · · · , XM , by the harmonic bath,
which is the time needed by the bath to equilibrate. That, of course, will result
in slow motion of the collective coordinates and thus decrease of their diffusions.
In contrary, the fast decrease to a negative value of the CVV can be seen as a free
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motion of the collective coordinate from the bath, and the short interval τ0 is the
time that bath needs to respond to Xm.

Here, we are suggesting the same theoretical framework as in Amadei et al.
(1999b), which corresponds to a double diffusion model, i.e., a short time diffusion
D0 within a configuration space region which can be approximated by a single
harmonic well, followed by a diffusion between harmonic well regions that can be
approximated by a long time diffusion constant D∞, as discussed above (Kamberaj
2011).

It is important to mention that the full dynamics of the collective coordinates,
similarly to the internal degrees of freedom of the system, can not be described by
this model to full equilibrium because, due to the time limits, the coordinates have
not sampled the whole available phase space. Therefore, one can not be sure that
D∞ describes the dynamical behavior of D(t) at the limit of a very long time.

8.4 Analyzing Slow Collective Variables Using Machine
Learning Approach

In this section, we will introduce an improved version of the auto-encoder machine
learning approach to the algorithm of determining the collective variables from
molecular dynamics simulation data.

Machine Learning (ML) approach provides a potential method to predict the
properties of a system using decision-making algorithms, based on some predefined
features characterizing these properties of the system. There exist different ML
methods used to predict missing data and discover new patterns during the data
mining process (McCulloch and Pitts 1943). Neural networks method considers a
large training dataset, and then it tries to construct a system, which is made up of
rules for recognizing the patterns within the training data set by a learning process.

In general, for an ANN with K hidden layers (see also Fig. 8.1), the output Yi is
defined as

Fig. 8.1 Illustration diagram
of an artificial neural network
(ANN). It is characterized by
an input vector of dimension
n, K hidden layers of
l
(1)
L1

, l
(2)
L2

, · · · , l(K)
LK

neurons
each, and an output vector of
dimension m
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Yi = f

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

LK∑

lK=1

f

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

LK−1∑

lK−1=1

f

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · · f

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

L2∑

l2=1

f

⎛

⎜⎜⎜⎜⎜⎜⎝

L1∑

l1=1

f

⎛

⎝
n∑

j=1

XjWjl1 + bl1

⎞

⎠

︸ ︷︷ ︸
input layer

︸ ︷︷ ︸
︸ ︷︷ ︸

︸ ︷︷ ︸
︸ ︷︷ ︸

︸ ︷︷ ︸

Wl1l2 + bl2
)

︸ ︷︷ ︸
1st hidden layer

· · ·

⎞

⎟⎟⎠

︸ ︷︷ ︸
2nd hidden layer

· · ·

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
···

WlK−1lK + blK

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
(K−1)th hidden layer

WlKi + bi

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Kth hidden layer

(8.53)

Here, W and b are considered as free parameters, which need to be optimized for a
given training data used as inputs and given outputs, which are known. To optimize
these parameters the so-called loss function is minimized using Gradient Descent
method (Qian 1999):

S (W,b) =
m∑

i=1

(
Y 0
i − Yi

)2
(8.54)

where Y0 represent the true output vector. For that, the gradients of S (W,b) with
respect to W and b are calculated (Qian 1999):

ΔW = −
(
∂S (W,b)

∂W

)

b
(8.55)

Δb = −
(
∂S (W,b)

∂b

)

W

In order to avoid overfitting, which is one of pitfalls of the machine learning
approaches (Srivastava et al. 2014), the following regularization terms have been
introduced in literature:
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Δ′W = γw (ΔW + γ1W) (8.56)

Δ′b = γw (Δb + γ1b)

where γw is called learning rate for the gradient and γ1 is called the regulation
strength.

Because the Gradient Descent method often converges to a local minimum, it
provides a local optimization to the problem. To avoid this pitfall, we are going to
introduce a new approach, called here as Bootstrapping Swarm Artificial Neural
Network (BSANN).

8.4.1 Bootstrapping Swarm Artificial Neural Network

The standard ANN method deals with random numbers, which are used to initialize
the parameters W and b; therefore, the optimal solution of the problem will be
different for different runs. In particular, we can say that there exists an uncertainty
in the calculation of the optimal solution (i.e., in determining W and b.) To calculate
these uncertainties in the estimation of the optimal parameters, W and b, we
introduce a new approach, namely bootstrapping artificial neural network based
on the method proposed by Gerhard Paass (1993). In this approach, M copies of
the same neural network are run independently using different input vectors. Then,
at regular intervals, we swap optimal parameters (i.e., W and b) between the two
neighboring neural networks. Figure 8.2 shows the layout of this configuration.

Furthermore, to achieve a good sampling of the phase space extended by the
vectors W and b, we introduce two other regularization terms similar to the swarm-
particle sampling approach. First, we define two vectors for each neural network,
namely WLbest

n and bLbest
n , which represent the best local optimal parameters for each

neural network n. In addition, we also define WGbest and bGbest, which represent the
global best optimal parameters among all neural networks.

Then, the expressions in Eq. (8.56) are modified by introducing these two
regularization terms as the following:

Δ′′Wn = γw (ΔWn + γ1Wn (8.57)

− γ2U(0, 1)
(

Wn − WLbest
n

)

− γ3U(0, 1)
(

Wn − WGbest
))

Δ′′bn = γw (Δbn + γ1bn

− γ2U(0, 1)
(

bn − bLbest
n

)

− γ3U(0, 1)
(

bn − bGbest
))
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Fig. 8.2 Layout of the Bootstrapping Swarm Artificial Neural Network (BSANN). It is charac-
terized by M different input vectors each of dimension n, K hidden layers of l(1)L1

, l
(2)
L2

, · · · , l(K)
LK

neurons each, and M different output vectors each of dimension m. Every two neighboring neural
networks communicate regularly with each other by swapping the optimized parameters

for each neural network configuration n, n = 1, 2, · · · , M . Here, U(0, 1) is a
random number between zero and one, and γ2 and γ3 represent the strength of biases
toward the local best optimal parameters and global best optimal parameters, respec-
tively. The first term indicates the individual knowledge of each neural network and
the second bias term the social knowledge among the neural networks. This method
is called here, Bootstrapping Swarm Artificial Neural Network (BSANN). Then, the
weights, Wn, and biases, bn, for each neural network n are updated at each iteration
step according to:

Wnew
n = Wold

n +Δ′′Wn (8.58)

bnew
n = bold

n +Δ′′bn
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8.4.2 Related Work

Recently, neural network method has seen a broad range of applications in molecular
modeling. In Lubbers et al. (2018), a hierarchical interacting particle neural network
approach is introduced using quantum models to predict molecular properties. In
this approach different hierarchical regularization terms have been introduced to
improve the convergence of the optimized parameters. While in Gastegger et al.
(2018), the machine learning like-potentials are used to predict molecular properties,
such as enthalpies or potential energies. A discussion about the degree to which
the general features included in characterizing the chemical space of molecules
to improve the predictions of these models is in Goh et al. (2018) and Collins
et al. (2018). Tuckerman and co-workers (Schneider et al. 2017) used a stochastic
neural network technique to fit high-dimensional free energy surfaces characterized
by reduced subspace of collective coordinates. While very recently (Kamath et al.
2018), a comparison study has been performed between neural network approach
and Gaussian process regression to fit the potential energy surfaces. One of the
recognized problems in using machine learning approaches in predicting free energy
surfaces is the inaccurate representation of general features of the surface topology
by the training data. To improve on this, a combination of metadynamics molecular
dynamics with neural network chemical models have also been proposed (Herr et al.
2018). It is worth noting that in the prediction of free energy surfaces, an accurate
representation of the reduced subspace can be important. For that, Wehmeyer and
Noé (2018) have used the time-lagged auto-encoder to determine essential degrees
of freedom of dynamical data.

Machine learning approaches have also been in the field of drug-design, for
instance, in predicting drug-target interactions (Chen et al. 2018), and it is a
promising approach. In particular, the method is used in combination with molecular
dynamics to predict the ligand-binding mechanism to purine nucleoside phospho-
rylase (Decherchi et al. 2015) by capturing the mechanism of drug-target binding
modes accurately.

8.4.3 Time-Lagged Auto-encoder Approach

Consider the vector QT , which represents T configurations of a trajectory of the
system:

QT = {q(0) → q(1) → · · · → q(T − 1)}

where q(t) (for t = 0, 1, · · · , T − 1) represents the coordinates of a configuration
of the system of 3N degrees of freedom (with N being the number of atoms):

q(t) = (q1(t), q2(t), · · · , q3N(t))
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This forms a Markovian chain of the states of a stationary stochastic random process
visited by the system during molecular dynamics simulation. The problem is to find
a reduced M-dimensional space (M < 3N ), which compresses the data. This is
suggested here by determining an encoding function as

E : R3N → RM (8.59)

and a decoding function as the following:

D : RM → R3N (8.60)

Eq. (8.59) provides a non-linear mapping using the Bootstrapping Swarm Artificial
Neural Network of the Cartesian coordinates q(t) as:

X(t) = E(q(t))

where X(t) is an M-dimensional vector in the essential subspace of slow collective
variables:

X(t) = (X1(t), X2(t), · · · , XM(t))

Then, similarly, using the non-linear mapping D we obtain an approximate time-
lagged signal, q̃(t + τ):

q̃(t + τ) = D(X(t))

This aims on average to minimize the error using the variation principle:

S = min
E,D

T−1−τ∑

t=0

||q(t + τ)−D (E (q(t))) ||2 (8.61)

Here, τ is the time-lag of the input signal q, and the approach is called time-lagged
auto-encoder. For τ = 0, the approach represents the standard auto-encoder method.
Note that both the input and output signal of the encoder-decoder non-linear neural
network is the trajectory q in the Cartesian space and the output signal of the
encoder, which is the input signal for the decoder, represent the slow collective
variables X.

The following steps have been suggested (Wehmeyer and Noé 2018) to create
the input signals. First, two new signals are reconstructed using the Cartesian space
vectors:

x(t) = q(t)− 1

T − τ

T−1−τ∑

k=0

q(k) (8.62)

y(t) = q(t + τ)− 1

T − τ

T−1−τ∑

k=0

q(k + τ)
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The convariance matrices are constructed as the following:

C1 = 1

T − τ

T−1−τ∑

t=0

x(t)x′(t) (8.63)

C2 = 1

T − τ

T−1−τ∑

t=0

y(t)y′(t)

where with (′) is denoted the transpose of a vector. Then, both signals x and y are
whitened as the following (Wehmeyer and Noé 2018):

x̂(t) = C
−1

2
1 x(t) (8.64)

ŷ(t) = C
−1

2
2 y(t)

These two signals are the input and the output, respectively, of the encoder-
decoder approach, which aims to define the non-linear functions E and D (that
represent the BSANN algorithm), such that, the following reconstructed error is
minimum:

Ŝ = min
E,D

T−1−τ∑

t=0

||ŷ(t)−D
(
E

(
x̂(t)

)) ||2 (8.65)



Chapter 9
Information Theory and Statistical
Mechanics

In this chapter, we will discuss some of the elements of the information theory
measures. In particular, we will introduce the so-called Shannon and relative entropy
of a discrete random process and Markov process. Then, we will discuss the
relationship between the entropy using the thermodynamic view and information
theory view. Also, we will introduce the transfer entropy as a measure of the
information flow and discuss its relationship with mechanics and thermodynamics.

9.1 Random Walks in Macromolecular Systems

To determine the structure of a macromolecular system, such as a protein, DNA,
RNA, and their complexes, often the atomic coordinates are used. In this context,
the following vector presents the structure:

(r1, r2, · · · , rN)

where ri = (xi, yi, zi) is the position vector of the atom i of a N atoms
macromolecular system. Often, these coordinates are obtained from the X-ray
crystallography experimental data and are known as a deterministic description of
the macromolecular structure. The X-ray data represents a static three-dimensional
structure view of the macromolecule, which is often considered as the starting point
of the functional dynamics of this macromolecule in a biological environment.
In general, with the functional dynamics, we understand the macromolecular
ensemble, which is also called the statistical description of the structure of a
macromolecular system.

The coarse-grained (CG) models have become popular with the particle-based
computational models for macromolecular systems (Voth 2008). These models
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showed a great promise in overcoming the problems arising from the time and size
scale limitations for biomolecular systems (Ueda et al. 1978; McCammon et al.
1980; Bahar and Jernigan 1997; Irbäck et al. 2000; Smith and Hall 2001a,b; Oldziej
et al. 2004; Tozzini 2005; Tozzini and McCammon 2005; Tozzini et al. 2006).
The primary challenge with coarse-grained protein models is in how to obtain an
effective potential energy function that captures the physics of the actual potential
for the space and time resolution of interest, and hence that they can be as predictive
as the atomistic models.

In a CG model, the particles referred to as sites, correspond to groups of one
or more atoms. Thus, a CG model is a transformation of an atomistic structure
into a CG representation of the same structure. This transformation, in general,
may be tailored by including more detailed critical features of a specific system
by omitting other details considered not that essential. This transformation consists
of a specification of the number, types, and connectivity of the sites used to describe
the CG model. In general, each site associates with a particular atomic group, which
determines the nature of the site, and then the sites connect via the CG bonds related
to the chemical bonds between associated atomic groups.

For a transformation from the atomistic model to a CG model, the transformation
matrix T can be determined, which maps the atomic configuration r into the
configuration X of the CG model (see Fig. 9.1). For instance, for the site s, the
Cartesian coordinates X are determined as a linear combination of the Cartesian
coordinates ri :

X = T(r) =
∑

i

csiri (9.1)

Fig. 9.1 Illustration of the atomistic structure r to a CG structure, X. The ribbons indicate the
underlying protein fold
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where csi are positive coefficients. If csi = msi/
∑

j msj , then X corresponds to the
center of mass of the associated atomic group.

Equation (9.1) gives the transformation used for a variety of CG models, with
explicit or implicit solvent (Shi et al. 2006). Some models may explicitly treat the
internal structure (Murtola et al. 2009; Zhang and Muthukumar 2009; Dama et al.
2013) or anisotropy of sites (Gay and Berne 1981).

The transformation is responsible for defining the CG model, but also for
determining the accuracy and efficiency of the model. An ideal CG model will
preserve the features that are necessary to describe both the phenomena of interest
and accurately include the effects of the fluctuation motions of the system. Besides,
it should omit unnecessary details to provide significant gains in computational
efficiency and filter out the high frequency and low amplitude fluctuations, only
weakly coupled to the slower collective motions. Moreover, it should allow for com-
putationally efficient treatment of the physical forces that govern the phenomena of
interest.

A general approach in designing high-resolution CG transformations is based on
atomistic structures (Tschöp et al. 1998; Canutescu et al. 2003; Rotkiewicz and
Skolnick 2008) or potential energy (Gopal et al. 2010; Maciejczyk et al. 2010)
instead of free energy. In the case of large biomolecular systems and their complexes
the lower CG models are reconstructed using the correlated fluctuations (Gohlke and
Thorpe 2006; Voth 2008; Sinitskiy et al. 2012; Potestio et al. 2009; Stepanova 2007;
Kamberaj 2011) or density maps determined using the experimental data (Shih et al.
2006; Arkhipov et al. 2008).

We start, following Kamberaj (2018), assuming that a Markovian chain of states
creates, the probability of obtaining a trajectory in the configuration space is as:

P (XT ) = P (x0)

T−1∏

t=0

π(xt → xt+1) (9.2)

= P (XT−1) π (xT−1 → xT )

Here, the vector XT represents T configurations of a trajectory of the system:

XT = {x0 → x1 → · · · → xT−1}

The initial configuration x0 is obtained from a canonically distributed with an initial
energy of the system E(x0):

P (x0) = exp (−βE(x0))

with β being the inverse temperature.
In Eq. (9.2), π(xt → xt+1) is the propagation probability at each time step,

which depends on the details of deterministic or stochastic dynamics. In general,
the Markovian transition probability π(xt → xt+1) can have any distribution that
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conserves the Boltzmann distribution. Here, π(xt → xt+1) represents the action
characterized by dynamical system, which produces a Boltzmann distribution in the
phase space of variables. In the general case of the Newtonian dynamics, we can
write:

π(xt → xt+1) = δ (xt+1 −ΦΔt(xt ))

where δ is the delta function and ΦΔt(xt ) is the discrete flow map of one time step
Δt propagation operator. In this case, a trajectory can be generated using an initial
state sampled from some canonical distribution and then propagating in time using
usual Hamiltonian dynamics. Note that for Hamiltonian dynamics is easy to find a
time-reversible discrete flow map.

First, we will briefly introduce the method of embedding parameters used to
reconstruct the phase space of a dynamical system from the time series representing
the trajectories of the components of the system, such as a macromolecule, as
described in Kamberaj and van der Vaart (2009b). Let X be the time vector for
a process characterizing a coarse-grained component of the dynamical system.
Time is considered discrete with tk = kΔt , where k is an integer. Then X =
{x(tk)}k=0,··· ,T−1 is a time discrete process, with T being the total number of time
snapshots. For simplicity, we are going to use the notation: x(tk) ≡ xk .

To characterize the dynamics of the discrete process, we use the time delayed
embedding method (Packard et al. 1980; Takens 1981; Grassberger and Procaccia
1983; Sauer et al. 1991). In this method, a state vector in a m-dimensional space of
a discrete process x(t) is obtained as:

xμk = (
xk−(m−1)τ , xk−(m−1)τ+τ , · · · , xk

)

where τ is the time lag, which, in general, is a multiple of Δt , and k = (m −
1)τ, · · · , T −1. Here, the superscript μ represents the pair of embedded parameters
(m, τ). The hope here is that the vector xμk will reconstruct the phase space of the
original component of the dynamical system in Cartesian coordinates r.

9.2 Optimization of Embedding Parameters

With the proper values of the m and τ embedding parameters, a smooth discrete time
process is defined which reconstructs the underlying dynamics. The correct choice
of these two parameters is crucial for the proper characterization of the structure
of the time series (Kennel et al. 1992; Abarbanel and Kennel 1993; Cellucci et al.
2003). The mathematical concepts for defining the state vector dimension m have
been reviewed in details in Noakes (1991) and Sauer et al. (1991). There are
several methods proposed for estimating the optimal embedding parameters m and τ

simultaneously (Kennel et al. 1992; Abarbanel and Kennel 1993). These methods try
to minimize the number of false nearest neighbors. A comparison of these methods
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is in Cellucci et al. (2003), as well as an approach that combines the global false
nearest neighbor (GFNN) method for the calculation of m, with a separate process
for determining the time shift (Cellucci et al. 2003).

In GFNN method, the time at which the auto-correlation function has its first
zero is used as the time lag τ .

Using the time lag τ defined above for the false nearest neighbors method, for a
state vector

xμk = (
xk−(m−1)τ , xk−(m−1)τ+τ , · · · , xk

)

the nearest neighbor is

xμ,NN
k =

(
xNN
k−(m−1)τ , x

NN
k−(m−1)τ+τ , · · · , xNN

k

)

where k = k0, · · · , T − 1 with k0 = (m − 1)τ . The Euclidean distance between
these two points in m-dimensional space is given by

Rm
k =| xμk − xμ,NN

k |=
(
m−1∑

i=0

(
xk−iτ − xNN

k−iτ

)2
)1/2

. (9.3)

The distance between these two points in the (m+ 1)-dimensional space is

Rm+1
k =

(
(Rm

k )2 +
(
xk−mτ − xNN

k−mτ

)2
)1/2

. (9.4)

This distance is normalized against the distance in m-dimensional space (Abarbanel
1996):

γm
k =

(
(Rm+1

k )2 − (Rm
k )2

(Rm
k )2

)1/2

= | xk−mτ − xNN
k−mτ |

Rm
k

. (9.5)

γm
k is compared to a threshold value Rtol , which is determined a priori (Abarbanel

1996; Cellucci et al. 2003) and recommended to be 15 (Abarbanel 1996; Cellucci
et al. 2003). If γm

k exceeds Rtol then xμ,NN
k is a false nearest neighbor of xμk in

the m-dimensional space and fFNN, the frequency of the false nearest neighbors, is
increased by one. The value of m is increased until fFNN approaches zero.

9.3 Shannon and Relative Entropy

Consider a random process Xμ as described above, which represents the dynamics
of a component of the macromolecular system, such as the trajectory of the center of
mass of one of the residues of the protein. Let us denote with p(xμk ) the probability
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mass function of the state k. Besides, this represents a Markovian process. By
definition (Thomas and Joy 2006), the Shannon entropy of the random process Xμ

is as:

Hp(Xμ) = −
T−1∑

k=k0

p(xμk ) lnp(xμk ) (9.6)

where ‘ln’ is the natural logarithm, and hence H is measured in natural units
of information (the so-called nats). From the information theory point of view,
Shannon entropy expresses the uncertainty on describing the random variable Xμ,
or the information required on average to completely describe the random variable
Xμ. In Eq. (9.6), the summation runs over all possible state vectors of Xμ.

If we assume that we do not know the real probability distribution of the process,
but we use another probability distribution, let us say, p̃(xμk ) (for k = k0, · · · , T −
1) to describe the process, then the so-called relative entropy is given as (Thomas
and Joy 2006):

D(p||p̃) =
T−1∑

k=k0

p(xμk ) ln
p(xμk )

p̃(xμk )
(9.7)

which represents the average value of the logarithm likelihood function
p(xμk )

p̃(xμk )
according to the true probability distribution p. The relative entropy is also known
as Kullback-Leibler distance (Kullback 1959).

It is easy to show that

Hp̃(X
μ) = Hp(Xμ)+D(p||p̃) (9.8)

which indicates that the uncertainty of the random process Xμ increases if we use the
guess probability mass function p̃(xμk ) to describe Xμ instead of the true probability
distribution p(xμk ). Besides, it can be shown that

D(p||p̃) ≥ 0

with equality if and only if p(xμk ) = p̃(xμk ) for all states k.

9.4 Relationship with the Second Law of Thermodynamics

As mentioned above, the Shannon entropy measures the uncertainty on describing
the random variable X. From the statistical mechanics, the Boltzmann’s entropy is
as:

S = kB lnΩ (9.9)



9.4 Relationship with the Second Law of Thermodynamics 349

where kB is the Boltzmann’s constant and Ω is the number of microstates. Based
on the variation principle of the entropy (discussed in the Chap. 2), the entropy of
an isolated system is a non-decreasing quantity. Therefore, the maximum entropy
corresponds to the macroscopic states with the maximum number of the microscopic
states. In other words, the disordered systems (those with the largest number of
microstates) have higher values of the entropy. If we make a correspondence
that “uncertainty” indicates “disorder”, then this shows that there is a connection
between the Shannon entropy and Boltzmann’s entropy in statistical mechanics.
Indeed, if we assume that all the microstates are equally probable, then

p = 1

Ω

determines the probability of observing the system in one of the microstates.
Replacing this expression in Eq. (9.6), definition of the Shannon entropy, we get

H(X) = −
∑

x∈X

1

Ω
ln

1

Ω
= lnΩ

This indicates that, up to a constant (i.e., kB ), these two definitions are equivalent.
Another view of this equivalence between the second law of thermodynamics

and the entropy function introduced by Shannon is as the following. Based on the
variation principle, the entropy for an isolated system is a non-decreasing quantity
(see also Chap. 2).

Now, let us consider two probability distributions, namely P (XT ) and P ′ (XT ),
on the state space of the same Markovian chain at some time T , which can be
obtained using two different initial configuration probabilities, let us say P (x0) and
P ′ (x0), or it may correspond to the case of a system having two possible energy
levels E0(X) and E1(X). Then, the relative entropy between the joint probability
mass functions at time T and T + 1 is given as:

D
(
p(xT , xT+1)||p′(xT , xT+1)

)

= D
(
p(xT )||p′(xT )

)+D (π(xT → xT+1)||π(xT → xT+1))

= D
(
p(xT+1)||p′(xT+1)

)+D
(
π(xT+1 → xT )||π ′(xT+1 → xT )

)
(9.10)

Since

D (π(xT → xT+1)||π(xT → xT+1)) = 0 (9.11)

D
(
π(xT+1 → xT )||π ′(xT+1 → xT )

) ≥ 0

then

D
(
p(xT+1)||p′(xT+1)

) ≤ D
(
p(xT )||p′(xT )

)
(9.12)
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Eq. (9.12) indicates that the two distributions get closer and closer as the time passes.
If we calculate the entropies, we get these relationships:

D
(
p(xT+1)||p′(xT+1)

) = H
(
p′(xT+1)

)−H (p(xT+1)) (9.13)

D
(
p(xT )||p′(xT )

) = H
(
p′(xT )

)−H (p(xT ))

If we assume that the probability distribution P ′(XT ) is stationary, that is
p′(xT+1) = p′(xT ) = p, then

H
(
p′(xT+1)

) = H
(
p′(xT )

) ≡ H (p)

Therefore, we obtain:

D
(
p(xT+1)||p′(xT+1)

) = H (p)−H (p(xT+1)) (9.14)

D
(
p(xT )||p′(xT )

) = H (p)−H (p(xT ))

Combining Eqs. (9.12) and (9.14), we get

H (p(xT+1)) ≥ H (p(xT )) (9.15)

which indicates that Shannon entropy is a non-decreasing function with time. This
is the second observation that shows the relationship between the Shannon entropy
and the second law of thermodynamics. In other words, since the uniform stationary
microstates are characterized by a maximum entropy, then they are most probable
microstates, in agreement with statistical mechanics view. Moreover, if we start the
Markovian chain from a uniform stationary distribution, then the principle of the
entropy indicates that the system will tend to the same state, in other words, the
entropy remains constant.

Now, consider a system having the microstates {xμk }T−1
k=k0

, which have two energy
levels E0(Xμ) and E1(Xμ). Denoting with Z(β) the partition function at the inverse
temperature β = 1/kBT , then

Z0(β) =
∑

k

exp
(−βE0(x

μ
k )

)
(9.16)

Z1(β) =
∑

k

exp
(−βE1(x

μ
k )

)

The Boltzmann-Gibbs probability distribution functions are given as

P0(β,Xμ) = 1

Z0(β)
exp

(−βE0(Xμ)
)

(9.17)

P1(β,Xμ) = 1

Z1(β)
exp

(−βE1(Xμ)
)
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The relative entropy between P0 and P1 is given as

0 ≤ D(P0||P1) =
∑

k

P0(β, xμk ) ln

1

Z0(β)
exp

(−βE0
(
xμk

))

1

Z1(β)
exp

(−βE1
(
xμk

)) (9.18)

= lnZ1 − lnZ0 + β〈E1(Xμ)− E0(Xμ)〉0
where 〈· · · 〉0 denotes an ensemble average with respect to the probability P0.
Equation (9.18) can be arranged in the form

〈E1(Xμ)− E0(Xμ)〉0 − (F1 − F0) = kBTD(P0||P1) ≥ 0 (9.19)

where Fi (for i = 0, 1) is the free energy related to Pi : Fi = kBT lnPi . This could
correspond physically to the case when the system for t < 0 is at equilibrium at
the state with energy E0, then some external work has been done on the system or
additional energy injected into the system at t = 0, W(xμk ) = E1(x

μ
k )−E0(x

μ
k ), and

the system experiences a transition from the state E0 to E1, irreversibly. Then, the
expectation of this external work taken with P0, which represents the equilibrium
distribution, is

W(Xμ) = 〈E1(Xμ)− E0(Xμ)〉0
Sign of Eq. (9.19) indicates that the process is irreversible, and that the total entropy
of the system and the environment increases.

9.5 Transfer Entropy

The Granger causality (Granger 1969) concept is usually used to characterize
the dependence of one variable Y measured over time on another variable X

measured synchronously. This concept is initially being used to define the direction
of interaction by estimating the contribution of X in predicting Y . However, there
exist many other variations of this concept, such as the linear approaches in the time
and frequency domain.

The information theory measure of transfer entropy quantifies the statistical
coherence between two processes that evolve in time. Schreiber (2000) introduced
the transfer entropy as the deviation from the independence of the state transition
(from the previous state to the next state) of an information destination X from the
(previous) state of an information source Y .

To characterize the dynamics of the two random Markovian processes, we will
use two vectors. For the first process, the vector is Xμx = {xμx

k }T−1
k=k0x

where

xμx

k = {
xk−(mx−1)τx , xk−(mx−1)τx+τx , · · · , xk−τx , xk

}
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Here, k0x = (mx − 1)τx , and the dynamics of the second process is characterized
by the vector Yμy = {yμy

k }T−1
k=k0y

:

y
μy

k = {
yk−(my−1)τy , yk−(my−1)τy+τy , · · · , yk−τy , yk

}

where k0y = (my − 1)τy . In the following discussion, xμx+1
k represents the vector

xμx+1
k = {

xk−(mx−1)τx , xk−(mx−1)τx+τx , · · · , xk−τx , xk, xk+δ

}

Similarly, y
μy+1
k represents the vector

y
μy+1
k = {

yk−(my−1)τy , yk−(my−1)τy+τy , · · · , yk−τy , yk, yk+δ

}

Note that m and τ are characteristics of each random process. The choice of
m and τ is crucial in order to reconstruct the dynamical structure of the random
processes as discussed above. For clarity, we denote μ+ 1 ≡ (m + 1, τ ) and k0 =
max

(
(mx − 1)τx, (my − 1)τy

)
.

By definition (Schreiber 2000), the transfer entropy, TY→X, is given as:

TY→X =
∑

k

p(xk+δ, xμx

k , y
μy

k ) log2
p(xk+δ | xμx

k , y
μy

k )

p(xk+δ | xμx

k )
(9.20)

where k is a time index. Similarly, the transfer entropy, TX→Y , is given as:

TX→Y =
∑

k

p(xμx

k , y
μy

k , yk+δ) log2
p(xμx

k , yk+δ | y
μy

k )

p(yk+δ | y
μy

k )
(9.21)

This formulation of the transfer entropy represents a dynamical measure, as
a generalization of the entropy rate to more than one element to form a mutual
information rate (Schreiber 2000).

In Eq. (9.20), p(xk+δ, xμx , y
μy

k ) is the joint probability distribution of observing
future value xk+δ and the histories of xμx

k and y
μy

k , p(xk+δ | xμx

k , y
μy

k ) is the
conditional probability of observing the future value of X given the past values
of both X and Y , and p(xk+δ | xμx

k ) is the conditional probability of observing the
future of X knowing its past. From Eq. (9.20), we can write

TY→X =
∑

k

p(xk+δ, xμx

k , y
μy

k )
[
log2 p(xk+δ | xμx

k , y
μy

k ) (9.22)

− log2 p(xk+δ | xμx

k )
]

=
∑

k

p(xk+δ, xμx

k , y
μy

k ) log2
p(xk+δ, xμx

k , y
μy

k )

p(xμx

k , y
μy

k )
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−
∑

k

p(xk+δ, xμx

k , y
μy

k ) log2
p(xk+δ, xμx

k )

p(xμx

k )

=
∑

k

p(xk+δ, xμx

k , y
μy

k ) log2 p(xk+δ, xμx

k , y
μy

k )

−
∑

k

p(xk+δ, xμx

k , y
μy

k ) log2 p(x
μx

k , y
μy

k )

−
∑

k

p(xk+δ, xμx

k , y
μy

k ) log2 p(xk+δ, xμx

k )

+
∑

k

p(xk+δ, xμx

k , y
μy

k ) log2 p(x
μx

k )

= H(Xμx+1)−H(Xμx )−H(Xμx+1,Yμy )+H(Xμx ,Yμy )

Thus, it can be seen that

TY→X = H(Xμx+1)−H(Xμx )−H(Xμx+1,Yμy )+H(Xμx ,Yμy ) (9.23)

≡ I
(
X+δ;Yμy | Xμx

)

where I (X+δ;Yμy | Xμx ) is the conditional mutual information as previously
stated in literature (Gourévitch and Eggermont 2007). This indicates that the transfer
entropy, TY→X can be interpreted as the average amount of information contained
in the source about next state X+δ of the variable X that was not already contained
in the past of X.

Similarly, TX→Y is given as

TX→Y = H(Yμy+1)−H(Yμy )−H(Xμx ,Yμy+1)+H(Xμx ,Yμy ) (9.24)

≡ I
(
Y+δ;Xμx | Yμy

)

To determine a local transfer entropy measure, we first note that Eq. (9.20) is

summed over all possible state transition tuples
(
xk+δ, xμx

k , y
μy

k

)
, weighted by

the probability of observing each such tuple, p(xk+δ, xμx

k , y
μy

k ). Therefore, we can
write:

TY→X =
∑

k

p(xk+δ, xμx

k , y
μy

k ) log2
p(xk+δ | xμx

k , y
μy

k )

p(xk+δ | xμx

k )

= 〈log2
p(xk+δ | xμx

k , y
μy

k )

p(xk+δ | xμx

k )
〉
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where 〈· · · 〉 indicates the average with probability p(xk+δ, xμx

k , y
μy

k ) and

tY→X(k + δ) = log2
p(xk+δ | xμx

k , y
μy

k )

p(xk+δ | xμx

k )
(9.25)

is the local transfer entropy. Equation (9.25) can further be simplified as:

tY→X(k + δ) = log2 p(xk+δ | xμx

k , y
μy

k )− log2 p(xk+δ | xμx

k ) (9.26)

= log2
p(xk+δ, xμx

k , y
μy

k )

p(xμx

k , y
μy

k )
− log2

p(xk+δ, xμx

k )

p(xμx

k )

= log2 p(x
μx+1
k , y

μy

k )− log2 p(x
μx

k , y
μy

k )

− log2 p(x
μx+1
k )+ log2 p(x

μx

k )

Thus, the local transfer entropy, tY→X(k), is given by

tY→X(k + δ) =
[
log2 p(x

μx+1
k , y

μy

k )− log2 p(x
μx

k , y
μy

k )
]

(9.27)

−
[
log2 p(x

μx+1
k )− log2 p(x

μx

k )
]

Introducing the definition of the local condition entropy as the following:

h(xk+δ | xμx

k , y
μy

k ) = −
(

log2 p(x
μx+1
k , y

μy

k )− log2 p(x
μx

k , y
μy

k )
)

(9.28)

h(xk+δ | xμx

k ) = −
(

log2 p(x
μx+1
k )− log2 p(x

μx

k )
)

we obtain

tY→X(k + δ) = h(xk+δ | xμx

k )− h(xk+δ | xμx

k , y
μy

k ) (9.29)

Similarly, for the local transfer entropy, tX→Y (k + δ), can be obtained

tX→Y (k + δ) =
[
log2 p(x

μx

k , y
μy+1
k )− log2 p(x

μx

k , y
μy

k )
]

(9.30)

−
[
log2 p(y

μy+1
k )− log2 p(y

μy

k )
]

Again, introducing the local condition entropy as:

h(yk+δ | xμx

k , y
μy

k ) = −
(

log2 p(x
μx

k , y
μy+1
k )− log2 p(x

μx

k , y
μy

k )
)

(9.31)

h(yk+δ | yμx

k ) = −
(

log2 p(y
μy+1
k )− log2 p(y

μy

k )
)
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the local transfer entropy becomes:

tX→Y (k + δ) = h(yk+δ | yμx

k )− h(yk+δ | xμx

k , y
μy

k ) (9.32)

9.6 Relationship Between Transfer Entropy
and Thermodynamics

To derive a relationship between the transfer entropy and the laws of the thermody-
namics, we are going to use the formalism introduced in Prokopenko et al. (2013)
and Prokopenko and Lizier (2014). For that, first we will consider a physical system
in a non-equilibrium thermodynamic state, but close to equilibrium. The state vector
xt ∈ Rf represents the macroscopic state of the system at any time t , where f

denotes the total number of macroscopic parameters characterizing the state, such
as temperature, pressure, the number density of each component of the physical
system. The set of all these vectors forms the phase space, and every macrostate can
be formed by many microstate vectors, each having the same probability being at
this macrostate.

The dynamics of the macrostates is defined by the transition probability p(xt+δ |
xt ), which gives the propagation probability with δ time step. In general, it will
depend on the details of deterministic or stochastic dynamics. Based on Prokopenko
et al. (2013) and Prokopenko and Lizier (2014), it is postulated that

p(xt+δ | xt ) = Ω
(1)
r

Z1
(9.33)

where Z1 is a normalization factor representing the partition function that depends
on the macrostate xt , and Ω

(1)
r is the ratio of the total number of microstates of all

the macrostates of the state xt+δ and xt :

Ω(1)
r = Ωt+δ

Ωt

Thus, using the Boltzmann definition of the entropy: S = kB lnΩ , we obtain

ΔS = S(xt+δ)− S(xt ) = kB lnΩ(1)
r

where ΔS represents the change on the physical system entropy during the transition
from the state at t to the state at t + 1. Therefore, Eq. (9.33) can be written in the
following form:

p(xt+δ | xt ) = 1

Z1
exp (−β (TΔS)) (9.34)

where T is the thermodynamic temperature.
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Now, let us consider that the physical system is interacting with surrounding
due to its coupling with this surrounding, however, the nature of this coupling is
not known. Let yt be the state characterizing the macrostate of the surrounding
at t , p(xt+δ | xt , yt ) is representing the transition probability in the presence of
the environment, which is obtained by sampling both X and Y. Then, the second
postulate is given as follows (Prokopenko et al. 2013; Prokopenko and Lizier 2014):

p(xt+δ | xt , yt ) = Ω
(2)
r

Z2
(9.35)

where Z2 is a normalization factor, and Ω
(2)
r is the ratio of the total number of

the microstates of the state xt+δ and xt in the context of yt , which is related to the
change of the internal entropy of the system in the presence of the surrounding:

Δσy = σ(xt+1)y − σ(xt )y = kB lnΩ(2)
r

Therefore, Eq. (9.35) can be written as:

p(xt+δ | xt , yt ) = 1

Z2
exp

(−β
(
TΔσy

))
(9.36)

Substituting Eqs. (9.34) and (9.36) into Eq. (9.25), we obtain:

tY→X(k + δ) = log2

(
Z1

Z2

)
+ 1

kB ln 2

(
Δσy −ΔS

)
(9.37)

Using the variation principle of the entropy (Prokopenko et al. 2013; Prokopenko
and Lizier 2014), the change on the entropy ΔS equals the sum of the entropy
change due to the coupling with the surrounding environment ΔSext and the internal
entropy production inside the physical system Δσy :

ΔS = ΔSext +Δσy (9.38)

Using Eqs. (9.37) and (9.38), we obtain:

tY→X(k + δ) = log2

(
Z1

Z2

)
− 1

kB ln 2
ΔSext (9.39)

For a closed system, the external entropy production, ΔSext, is given as (Prokopenko
et al. 2013; Prokopenko and Lizier 2014):

ΔSext =
∫

δq

T
(9.40)

where q is the heat given to the system by the surrounding and T is the temperature
of the system. If the transition from the state k to the state k + δ is reversible, then
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ΔS = ΔSext, and hence Δσy = 0. If the process is irreversible, then ΔS > ΔSext,
and hence Δσy > 0. Thus, we can write that

ΔS ≥
∫

δq

T

where the equality stands for reversible transition only. For small fluctuations close
to the equilibrium, Z1 ≈ Z2, then Eq. (9.39) can be written as:

tY→X(k + δ) = − ΔSext

kB ln 2
(9.41)

The sign minus indicates the direction of the heat flow, and hence entropy
production, attributed to the surrounding Y and the local transfer entropy is opposite.

For processes close to the equilibrium, both reversible or irreversible, at constant
temperature, we obtain

tY→X(k + δ) = − Δqext

kBT ln 2
(9.42)

where Δqext is the heat flow to the system from the surrounding in the context of
the source Y , given as (Prokopenko and Lizier 2014)

Δqext =
∫

δqext

Following Prokopenko and Lizier (2014), Eq. (9.42) indicates that if the heat flows
to the system from the surrounding, i.e. Δqext > 0, then tY→X(k + δ) < 0 and a
measure on Y misinforms about the macroscopic state transition k + δ, and hence
the production entropy due to the interaction with surrounding increases. On the
other hand, if the heat flows to the surrounding from the system, i.e. Δqext < 0,
then tY→X(k + δ) > 0, and we can say that a measure of the source Y improves
our predictions about the macroscopic transition state of X. It is trivial to show that
for thermally isolated transitions, that is Δqext = 0, we obtain tY→X(k + δ) = 0,
indicating that X and Y are independent, in other words, X and Y do not interact
with each other.

If the process is not isothermic, then, in general,

∫
δqext

T
�= Δqext

T

Furthermore, for non-equilibrium transition states (i.e., Z1 �= Z2), Eq. (9.39) can be
written as

tY→X(k + δ) = log2

(
Z1

Z2

)
− 1

kB ln 2

∫
δqext

T
(9.43)
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It can easily be found that for Z1 ≤ Z2 and assuming that the system dissipates heat

to the surrounding, we have log2

(
Z1

Z2

)
≤ 0, and hence we obtain

tY→X(k + δ) ≤ − 1

kB ln 2

∫
δqext

T
(9.44)

In this case the local transfer entropy is positive. We can further write that

∫
δqext

T
≤ − (kB ln 2) tY→X(k + δ) (9.45)

which indicates that
∫ δqext

T
is negative and has as an upper bound the value

− (kB ln 2) tY→X(k + δ).
While for Z1 ≥ Z2 and if the system absorbs heat from the surrounding, we have

log2

(
Z1

Z2

)
≤ 0, which yields

tY→X(k + δ) ≥ − 1

kB ln 2

∫
δqext

T
(9.46)

and the local transfer entropy is negative. Or, we can write that

∫
δqext

T
≥ − (kB ln 2) tY→X(k + δ) (9.47)

Eq. (9.47) indicates that
∫ δqext

T
is positive and has a lower bound equal to

− (kB ln 2) tY→X(k + δ).
These two cases indicate that in absolute value we can write that

|
∫

δqext

T
|≥ (kB ln 2) | tY→X(k + δ) | (9.48)

Furthermore, for isothermal processes, we can write:

| Δqext |≥ (kBT ln 2) | tY→X(k + δ) | (9.49)

which indicates a linearity on the temperature T . Now, consider that physical system
X interacts with two surroundings in the context of the source Y . The first one,
is at colder temperature Tc and the second surrounding environment is hold at a
higher temperature Th. During the interaction with the first environment the system
dissipates heat

Δqext ≤ − (kBTc ln 2) tY→X(k + δ) (9.50)
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which is negative. On the other hand, during the interaction with the second
surrounding environment, the system absorbs heat

Δqext ≥ − (kBTh ln 2) tY→X(k + δ) (9.51)

which is positive. Then, the net heat flow is given as:

| Δqnet,ext ≥| − (kB(Th − Tc) ln 2) tY→X(k + δ) | (9.52)

or

| Δqnet,ext |≥ (kB(Th − Tc) ln 2) | tY→X(k + δ) | (9.53)

These results indicate an essential relationship between the local transfer entropy
and thermodynamics, that is tY→X(k + δ) is proportional to −ΔSext, which is the
external entropy production during the irreversible transition in the context of the
source Y .

9.7 A Statistical Mechanics Point of View
of Transfer Entropy

In this section, we are going to introduce a rigorous theory for the information trans-
fer between dynamical system components using statistical mechanics developed in
Liang and Kleeman (2005) and Liang (2013).

Consider the dynamical system characterized by the vector X in a phase space
Ω:

X = {x1, x2, · · · , xN }
which is given as follows:

dX
dt

= F(X) (9.54)

The joint differential entropy between x1 and x2 is given as

h(t) = −
∫ ∫

Ω

ρ(X, t) ln ρ(X) dx1 dx2 (9.55)

where ρ(X, t) is the phase space distribution function of the ensemble, which
satisfies the Liouville equation (Goldstein 2002):

dρ

dt
= ∂ρ

∂t
+ F · ∇ρ = 0
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and ρ(X, t) is a conserved quantity. It can be found that rate change of the joint
differential entropy is

dh(t)

dt
= 〈∇ · F〉 (9.56)

which indicates that the change on the differential entropy depends on the compress-
ibility of the phase space. We can now determine the marginal differential entropy
of the variable x1 as:

h1(t) = −
∫

ρ1(x1, t) ln ρ1(x1, t) dx1 (9.57)

where ρ1(x1, t) is the marginal distribution function of x1 defined as

ρ1(x1, t) =
∫

ρ(x1, x2, t) dx2

Then, the change on the marginal differential entropy can be determined as

dh1(t)

dt
= −

∫ ∫
ρ(x1, x2, t)

(
F1

ρ1

)(
∂ρ1

∂x1

)
dx1 dx2 (9.58)

which can further be written as

dh1(t)

dt
= dH ∗

1

dt
+ d

dt
(H1 −H ∗

1 ) (9.59)

where

dH ∗
1

dt
=

∫ ∫
ρ(x1, x2, t)

∂F1

∂x1
dx1 dx2

Then, the transfer entropy from x2 component to x1 is defined as:

T2→1 = d(H1 −H ∗
1 )

dt
(9.60)

= −
∫ ∫

ρ(x1, x2, t)

(
F1

ρ1

∂ρ1

∂x1
+ ∂F1

∂x1

)
dx1 dx2

= −
∫ ∫

ρ2|1(x2|x1, t)
∂ (F1ρ1(x1, t))

∂x1
dx1 dx2

where ρ2|1(x2|x1, t) is the conditional distribution function defined as

ρ2|1(x2|x1, t) = ρ(x1, x2, t)

ρ1(x1, t)
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Consider the transformations (discrete maps):

Φ :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x1(t +Δt) = x1(t)+ΔtF1(X)

x2(t +Δt) = x2(t)+ΔtF2(X)

· · · · · ·
xN(t +Δt) = xN(t)+ΔtFN(X)

Using the Frobenius-Perron operator:

Pρ(x1, x2) = ρ[Φ−1(x1, x2)] | J−1 |

where

J−1
ij =

[
∂2(Φ−1(x1, x2))

∂xi∂xj

]

for i, j = 1, 2, and | J−1 | is the determinant of the inverse Jacobian matrix, J−1.
The entropy increase after applying an invertible mapping Φ is:

ΔH = −
∫ ∫

Pρ lnPρdx1dx2 +
∫ ∫

ρ ln ρdx1dx2 = 〈ln | J |〉

Consider now the entropy transfer, e.g., X2 to X1 first; the entropy of X1
increases as (Liang and Kleeman 2005; Liang 2013)

ΔH1 = −
∫

Ω1

(∫

Ω2

Pρdx2

)
ln

(∫

Ω2

Pρdx2

)
dx1 (9.61)

+
∫

Ω1

ρ1 ln ρ1dx1

= (ΔH1 −ΔH ∗
1 )+ΔH ∗

1 = T2→1 +ΔH ∗
1

It can be noticed that when Φ1 is invertible, then, ΔH ∗
1 = 〈ln | J1 |〉, and when

Φ1 is independent of X2, then ΔH ∗
1 = ΔH1, i.e. the asymmetry property.

Because of the asymmetry, information transfer is distinctly different from the
transfer of other quantities, such as energy. In other words, the information is
not lost in one component for another component to receive it. That is, according
to Liang (2013), it could be that Tj→i = 0, for example if Φi (or equivalently Fi

for the continuous case) is independent of xj , but in mean time, Ti→j needs not
to be zero unless Φj (or equivalently Fj for the continuous case) is independent
of xi .
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As an illustration, one can consider the Baker transformation, which is an area-
preserving chaotic map Φ : Ω → Ω (Liang 2013):

Φ(x1, x2) =

⎧
⎪⎨

⎪⎩

(
2x1,

x2

2

)
, 0 ≤ x1 ≤ 1

2
, 0 ≤ x2 ≤ 1

(
2x1 − 1,

1

2
x2 + 1

2

)
,

1

2
< x1 ≤ 1, 0 ≤ x2 ≤ 1

where Ω is a unit square Ω = [0, 1] × [0, 1]. The Jacobian J is

J = det

(
∂ (Φ1(x1),Φ2(x2))

∂ (x1, x2)

)
= 1

Following Liang (2013), the entropy is a conserved quantity because of the area-
conserving property of the map, which means that

ΔH = 〈ln J 〉 = 0

indicating that this is an invertible map with inverse map given by (Liang 2013):

Φ−1(x1, x2) =

⎧
⎪⎨

⎪⎩

(x1

2
, 2x2

)
, 0 ≤ x1 ≤ 1, 0 ≤ x2 <

1

2(
x1 + 1

2
, 2x2 − 1

)
, 0 ≤ x1 ≤ 1,

1

2
≤ x2 ≤ 1

The projection operator P can be found following Liang (2013) as:

Pρ(x1, x2) = J−1ρ
(
Φ−1(x1, x2)

)
(9.62)

=

⎧
⎪⎨

⎪⎩

ρ
(x1

2
, 2x2

)
, 0 ≤ x1 ≤ 1, 0 ≤ x2 <

1

2

ρ

(
x1 + 1

2
, 2x2 − 1

)
, 0 ≤ x1 ≤ 1,

1

2
≤ x2 ≤ 1

Next, the integration with respect to x2 of Pρ(x1, x2) in Eq. (9.62) allows obtaining
the marginal density of x1, ρi at time τ + 1 (Liang 2013):

(Pρ)1(x1) =
∫ 1/2

0
ρ
(x1

2
, 2x2

)
dx2 +

∫ 1

1/2
ρ

(
x1 + 1

2
, 2x2 − 1

)
dx2 (9.63)

= 1

2

∫ 1

0

(
ρ
(x1

2
, x2

)
+ ρ

(
x1 + 1

2
, x2

))
dx2

= 1

2

(
ρ1

(x1

2

)
+ ρ1

(
x1 + 1

2

))



9.7 A Statistical Mechanics Point of View of Transfer Entropy 363

where a change of integration variable is employed, respectively, x2 → 2x2 in the
first integral and x2 → 2x2 − 1 in the second integral.

If the coordinate x2 is fixed, then one dimensional map is obtained (Liang 2013):
Φ1 : Ω1 → Ω1, where Ω1 = [0, 1] and

Φ1(x1) = 2x1 (mod 1)

Therefore,

(
P∗ρ

)
1 (x1) = ∂

∂x1

∫

Φ−1
1 ([0,x1])

ρ(x)dx (9.64)

= ∂

∂x1

x1/2∫

0

ρ(x)dx + ∂

∂x1

(x1+1)/2∫

1/2

ρ(x)dx

= 1

2

(
ρ1

(x1

2

)
+ ρ1

(
x1 + 1

2

))

where ∗ denotes projection along the dimension x1, while keeping dimension x2
constant, and Φ−1

1 ([0, x1]) is the counterimage of [0, x1] (Liang 2013):

Φ−1
1 ([0, x1]) =

[
0,

x1

2

]
∪
[

1

2
,
x1 + 1

2

]

Thus, the transfer entropy from 2 to 1 is given by:

T2→1 = ΔH1 −ΔH ∗
1

where

ΔH1 = −
∫

(Pρ)1(x1) ln ((Pρ)1(x1)) dx1 +
∫

ρ1(x1) ln ρ1(x1)dx1 (9.65)

ΔH ∗
1 = −

∫
(P∗ρ)1(x1) ln

(
(P∗ρ)1(x1)

)
dx1 +

∫
ρ1(x1) ln ρ1(x1)dx1

Since, (Pρ)1(x1) = (P∗ρ)1(x1) as indicated by Eqs. (9.63) and (9.64), then ΔH1 =
ΔH ∗

1 , and thus

T2→1 = 0
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Now, the information flow in the opposite direction (T1→2) can be calculated as
described in Liang (2013). For that, the marginal density is first evaluated:

(Pρ)2(x2) =
1∫

0

Pρ(x1, x2)dx1 (9.66)

=

⎧
⎪⎨

⎪⎩

∫ 1
0 ρ

(x1

2
, 2x2

)
dx1, 0 ≤ x2 <

1

2∫ 1
0 ρ

(
x1 + 1

2
, 2x2 − 1

)
dx1,

1

2
≤ x2 ≤ 1

Then, the marginal entropy increase of x2 is obtained by

ΔH2 = −
∫ 1

0
(Pρ)2(x2) ln ((Pρ)2(x2)) dx2 (9.67)

+
∫ 1

0
ρ2(x2) ln (ρ2(x2)) dx2

= −
∫ 1

0

∫ 1

0
Pρ(x1, x2) ln

(∫ 1

0
Pρ(s, x2)ds

)
dx1dx2

+
∫ 1

0

∫ 1

0
ρ(x1, x2) ln

(∫ 1

0
ρ(s, x2)ds

)
dx1dx2

= − ln 2

+
∫ 1

0

∫ 1/2

0
ρ(x1, x2) ln

(∫ 1

0
ρ(s, x2)ds

)
dx1dx2

+
∫ 1

0

∫ 1

1/2
ρ(x1, x2) ln

(∫ 1

0
ρ(s, x2)ds

)
dx1dx2

−
∫ 1

0

∫ 1/2

0
ρ(x1, x2) ln

(∫ 1/2

0
ρ(s, x2)ds

)
dx1dx2

−
∫ 1

0

∫ 1

1/2
ρ(x1, x2) ln

(∫ 1

1/2
ρ(s, x2)ds

)
dx1dx2

where the term − ln 2 is because the interval of x2 values in Eq. (9.66) is not a closed
interval on x2 = 1/2. Equation (9.67) can be arranged in a compact form (Liang
2013):

ΔH2 = − ln 2 + I1 + I2 (9.68)
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where

I1 =
∫ 1

0

∫ 1/2

0
ρ(x1, x2) ln

(∫ 1

0
ρ(s, x2)ds

)
dx1dx2

−
∫ 1

0

∫ 1/2

0
ρ(x1, x2) ln

(∫ 1/2

0
ρ(s, x2)ds

)
dx1dx2

I2 =
∫ 1

0

∫ 1

1/2
ρ(x1, x2) ln

(∫ 1

0
ρ(s, x2)ds

)
dx1dx2

−
∫ 1

0

∫ 1

1/2
ρ(x1, x2) ln

(∫ 1

1/2
ρ(s, x2)ds

)
dx1dx2

In addition, fixing x1, and evaluating the Jacobian J2 (Liang 2013):

J2 = det

(
∂Φ(x1, x2)

∂x2

)

x1

= 1

2

The marginal entropy increase of x2 keeping x1 fixed is obtained as

ΔH ∗
2 = 〈ln J2〉 = − ln 2 (9.69)

Thus, the information flow from 1 to 2 is given by:

T1→2 = ΔH2 −ΔH ∗
2 = I1 + I2 > 0

indicating that T2→1 = 0, but in mean time T1→2 > 0, which is the asymmetry
property of the information flow.

Furthermore, ΔH ∗
1 is due to the expansion or contraction of the phase space

in dimension X1, while keeping dimension X2 unchanged. Even though an N -
dimension system is invertible, its components may not be so. As elucidated above,
while X1 gains information from X2, X2 might have nothing to do with X1. For
a non-Hamiltonian system (Tuckerman et al. 2001), however, the compressibility
does not need to vanish (| J |�= 1).

9.8 Mutual Information

Consider again two time series as the following:

{xμx

k }k=k0,··· ,T−1; {yμy

k }k=k0,··· ,T−1
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which are representing two random processes. Here, X and Y are considered fully
independent of each other if the following relationship is satisfied between their
fluctuation probabilities:

p(xμx

k , y
μy

k ) = p(xμx

k )p(y
μy

k ), (9.70)

otherwise they are dependent. A continuous measure of the distance between the
probability distributions p(xμx

k , y
μy

k ) and p(xμx

k )p(y
μy

k ), can be introduced using
the so-called Kullback-Leibler distance (Kullback and Leibler 1951; Kullback 1959,
1987):

I(X; Y ) ≡ KD =
T−1∑

k=k0

p(xμx

k , y
μy

k ) log2
p(xμx

k , y
μy

k )

p(xμx

k )p(y
μy

k )
, (9.71)

which equals the mutual information between two time series.
Equation (9.71) can also be expressed in terms of the Shannon information

entropy (S) (Shannon and Weaver 1949) as the following:

I(X; Y ) =
∑

k

p(xμx

k , y
μy

k ) log2 p(x
μx

k , y
μy

k ) (9.72)

−
∑

k

p(xμx

k , y
μy

k ) log2 p(x
μx

k )p(y
μy

k )

= −H(Xμx ,Yμy )−
∑

k

p(xμx

k , y
μy

k ) log2 p(x
μx

k )

−
∑

k

p(xμx

k , y
μy

k ) log2 p(y
μy

k )

= H(Xμx )+H(Yμy )−H(Xμx ,Yμy ),

where the sum is over all states.

9.9 Symbolic Analysis

To calculate the Shannon entropy we need to label all the possible states visited
by the system. In general, we could use the binning method, in which we define
the range of fluctuation amplitudes for each degree of freedom and then, divide the
range into bins and enumerate the entries (nk) for each bin (k), which will give us
the probability of visiting each state (i.e. bin). The disadvantage of this approach
is that one has to define the bin width, which introduces a new free parameter
and thus increasing the complexity of the method. Other used methods include,
for example, kernel density estimators (Moon et al. 1995), or k-nearest neighbor



9.9 Symbolic Analysis 367

distances approach (Kraskov et al. 2004). In particular, the last method is considered
to be an improvement of the mutual information estimators (Kraskov et al. 2004).

In this section, we are going to follow a different approach, namely symbolic
method, based on coarse-graining the time series into symbols (Lehrman et al.
1997; Rechester and White 1991a,b; Bandt and Pompe 2002; Staniek and Lehnertz
2008; Kamberaj and van der Vaart 2009a). In particular, we use the symbolization
technique proposed in Kamberaj and van der Vaart (2009a), which we found to
be computationally very robust and at the same time maximizing the information
content about the real-time series. According to this method, a symbolic sequence

(
X̂0, X̂1, · · · , X̂N−1

)

is created associated with the time series

(X0, X1, · · · , XN−1)

through a process, called here coarse-graining (Kamberaj and van der Vaart 2009a)
(and the references therein). In the coarse-graining, all information concerning the
dynamics of series is suitably encoded using a partitioning of phase space. The
time-series (X0, X1, · · · , XN−1) is converted into a symbolic sequence using the
following rule

X̂j = Ŝk, if Xc
k < Xj < Xc

k+1 (9.73)

where
(
Xc

0, X
c
1, · · · , Xc

D

)
is a given set of D + 1 critical points, and

(
Ŝ0, Ŝ1, · · · , ŜD−1

)

is a set of D symbols, here the numbers 0, 1, 2, and so on. Here, D is chosen such
that the Kraft inequality is satisfied:

∑

k

D−mk ≤ 1

where the sum runs over all state vectors, and mk is the length of each state vector,
which for a single time series is considered to be equal for every state vector.

The new state vector generated this way,

X̂μ
k ≡

(
Ŝ
(k)
1 , Ŝ

(k)
2 , · · · , Ŝ(k)

m

)T
,

represents symbolic state vector, which is a subset of numbers from 0 to D − 1.
Concatenation of the symbols of a sequence of length m yields the word Wk:

Wk =
(
X̂k−(m−1)τ · · · X̂k−τ X̂k

)
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A particular sequence of symbols {X̂0, X̂1, · · · , X̂N−1} is uniquely characterized by
the words Wk for k = k0, · · · , N−1. The probability of finding a particular value of
Wk is calculated from the simulation data, and used to compute the Shannon entropy

H(X̂μ) = −
∑

k

p(Wk) log2 p(Wk) (9.74)

Since the time series {X0, X1, · · · , XN−1} is mapped onto the symbolic sequence
{X̂0, X̂1, · · · , X̂N−1} uniquely (i.e., the symbolic representation is injective) the
entropies H(X̂μ) and H(Xμ) coincides (Bonanno and Mega 2004).

We obtain the critical points {Xc
d}Dd=0 for a particular series by maximizing the

entropy for all possible partitions. Increasing the number of critical points will
initially increase the information entropy, but after a sufficient number of critical
points, the information entropy plateaus. At this point the optimum number of
critical points has been reached, a further increase will not increase the accuracy
of the calculation, but it does slow down the computation. In our implementation,
we optimize critical points by maximizing the Shannon entropy through a Monte
Carlo approach (Kamberaj and van der Vaart 2009a). Similarly, the joint Shannon
information entropy of two discrete symbolic processes {X̂0, X̂1, · · · , X̂N−1} and
{Ŷ0, Ŷ1, · · · , ŶN−1} is calculated as

H(X̂μx , Ŷμy ) = −
∑

k

p(W̄k) log2 p(W̄k)

where W̄k is the concatenation of two words, W(x)
k and W

(y)
k , representing the words

of processes X and Y , respectively.
In general, the length of discrete processes and the number of states are limited

by the sampling. To correct for the finite sampling of the time discrete processes,
we use (Grassberger 1988):

H(X̂μ) = 1

ln 2

(
lnN − 1

N

∑

k

nkψ(nk)

)
, (9.75)

where sum is over all states, nk is the frequency of observing state k, and ψ(x) is
the derivative of Gamma function Γ with respect to x. Note that the division by ln 2
is necessary to convert into bits the units of Shannon entropy in Eq. (9.75).

The symbolic transfer entropy can be written as:

T̂
Ŷ→X̂

= H(X̂μx+1)−H(X̂μx )−H(X̂μx+1, Ŷμy )+H(X̂μx , Ŷμy ) (9.76)

From Eq. (9.30), we define the symbolic local transfer entropy as:

t̂
Ŷ→X̂

(k + δ) =
[
log2 p(x̂

μx+1
k , ŷ

μy

k )− log2 p(x̂
μx

k , ŷ
μy

k )
]

(9.77)

−
[
log2 p(x̂

μx+1
k )− log2 p(x̂

μx

k )
]
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The symbolic mutual information, ÎXY , is calculated as

Î (X; Y ) = H(X̂μx )+H(Ŷμy )−H(X̂μx , Ŷμy ). (9.78)

We will use a generalized time coarse-grained correlation coefficient similar to
that proposed elsewhere (Joe 1989):

RSMI
XY =

[
1 − exp

(
−2 (ln 2) Î (X; Y )/g

)]1/2
, (9.79)

where g is the space dimension. For a Gaussian joint probability distribu-
tion p(x̂μx

k , ŷ
μy

k ), RSMI
XY coincides with the Pearson correlation coefficient,

RPearson
XY (Cellucci et al. 2005).



Chapter 10
Practical Aspects of Molecular Dynamics
Simulations

In this chapter, we will introduce some practical aspects of molecular dynamics
simulations, such as designing the constraints (e.g., SHAKE), periodic boundary
conditions, spherical cutoffs, treatment of the long-range interactions (in particular,
electrostatic interactions), and identifying the equilibrium states of the simulations.

For more about this topic, the reader can consider the material in Leach (2001),
Allen and Tildesley (1989) and Frenkel and Smit (2001).

10.1 Designing Constraints for Molecular Dynamics
Simulations

Realization of a molecular dynamics simulation has to account for both, the physical
nature of the system under study and the available computational power. System
size, time step, and total time duration must be selected so that the calculation can
finish within a reasonable period. On the other hand, the simulation run has to be
long enough to be able to capture phenomena at the time scales of the studied
natural processes. Besides, statistically, the timescales span by the simulations
should match the kinetics of the natural process. Most scientific works about the
dynamics of proteins and DNA use data from simulations spanning nanoseconds
to microseconds. In general, to obtain the simulations at these timescales, we will
need several CPU-days to CPU-years also depending on the system size. Besides,
parallel algorithms allow sharing the computation workload among CPUs, and
special algorithms for running in the computer’s GPU (Stone et al. 2011; Phillips
et al. 2014).

During a classical MD simulation, the most computationally intensive task is
the evaluation of the potential and forces as a function of the particles internal
coordinates, where the most expensive are the evaluation of the non-bonded or non-
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covalent terms. Common molecular dynamics simulations scale by O(N2), where N
is the number of particles if all pair-wise electrostatic and van der Waals interactions
account explicitly. This computational cost reduces by employing electrostatics
methods, such as Particle Mesh Ewald (O(N log(N))) or good spherical cutoff
techniques (O(N)).

The integration time-step is another factor that determines total CPU time
required for a simulation, which gives in typical MD simulation the time length
between evaluations of the potential and forces. The timestep has to be small
enough to avoid numerical errors, as a rule, lower than the fastest vibrational
frequency in the system. In typical classical MD simulation, the time step is of
the order of 1 femtosecond. This value may extend by using algorithms, such
as SHAKE (Ryckaert et al. 1977), which fix the vibrations of the fastest atoms
(e.g., hydrogens) into place. Multiple time scale methods allow for extended times
between updates of slower long-range forces (Tuckerman et al. 1992).

For performing the simulations of the macromolecules in a solvent environment,
often a choice should be made between explicit solvent and implicit solvent.
Usually, the explicit solvent models of the force fields, such as the TIP3P and
SPC/E waters, are computationally expensive, while implicit solvents use a mean-
field approach, and hence they are usually less costly. Typically, explicit solvent
models require the inclusion of about ten times more particles in the simulation.
Besides, the explicit models are such that they allow to reproduce specific properties
of the solute macromolecules and their kinetics.

In the molecular dynamics simulations of the macromolecules, the simulation
box size must be large enough to avoid boundary condition artifacts. Usually, the
boundary conditions are treated by either having fixed values at the edges or by
applying periodic boundary conditions in which one side of the simulation loops
back to the opposite side. In practice, this mimics a bulk phase.

10.2 Initial Configuration

The initial configuration for the system is chosen before we perform MD simula-
tions. That is very crucial for the success of the MD simulation since it often depends
on the arrangement of the particles. Usually, the initial configuration for a system at
equilibrium is close to the desired state. Also, it is recommended that the energy of
the initial configuration does not contain terms with high-energy interactions. Often,
to remove such terms, energy minimization can be performed before the start of MD
simulations to minimize the system to the closest local minimum.

If there exists an experimental structure of the system, then this could be used.
If experimental structures are not available, then, to simulate homogeneous liquid
systems, for example, containing a large number of molecules, lattice-like structures
can be chosen as a starting configuration. Lattice structures can be selected from
one of the common crystallographic lattices. The most common one is the face-
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centered cubic lattice, which contains 4n3 points, where n = 2, 3, 4, · · · , resulting
in an initial configuration of 32, 108, 256, · · · , atoms or molecules. The size of
the lattice is also chosen appropriately; often it is selected such that the density is
lower than of the system under study. If the system under investigation is composed
of molecules, then it is also necessary to assign an orientation for each molecule.
For linear molecules, a face-centered cubic lattice with molecules regularly oriented
along the four diagonals of the unit cell (for example, the solid structure of CO2). For
non-linear molecules, the orientation can be chosen at random or by making small
random changes from the direction in a regular lattice. For high-density structures,
this may result in non-physical overlaps and instability of simulations, especially
in the case of large molecules. Therefore, in such cases, it is suggested to chose an
initial configuration close to the expected equilibrium distribution. For example, all
molecules aligned approximately in the same direction initially, as in the case of the
liquid crystals. It is important noting that merely placing the molecules at random
can usually give rise to high-energy overlaps and numerical instabilities.

For MD simulations of inhomogeneous systems, for example, the systems
containing a solute molecule or complex macromolecules immersed in a solvent,
the starting configuration of the solute may be obtained from an experimental
technique (usually X-ray crystallography or NMR) or generated theoretically using
modeling methods. The coordinates of the solvent molecules are added to give
an appropriate solvent density in normal conditions. (Note that for some solvent
molecules the coordinates of the X-Ray structures can be used as a starting point.)
In practice, these solute coordinates, obtained from previously equilibrated pure
solvent configurations, immerse in the solvent, removing the solvent molecules
in close contact with the solute. Typically, for the inhomogeneous systems, some
minimization steps are required priory of MD simulations to equilibrate the system
to the nearest local minima.

10.3 Periodic Boundary Conditions

In computer simulations, the maximum size of the system is limited by the available
storage on the computer or by the speed of execution of the program. As an example,
if we consider that one mole of a liquid will contain approximately 1023 particles we
are far from being able to study this system. Mainly if we are interested in studying
the properties of the bulk fluid, a small number of particles we can simulate, if not
all of them, would be within the influence of the walls of the boundary. Periodic
boundary conditions enable a simulation to be performed using a relatively small
number of particles, in such a way that every particle experiences force as if it
was in bulk fluid phase. In the two-dimensional each box is surrounded by eight
neighbors as is shown in Fig. 10.1; in three dimensions each box would have 26
nearest neighbors.
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Fig. 10.1 Illustration of the periodic boundary conditions in two dimensions. The graph is
produced using VMD program (Humphrey et al. 1996)

The coordinates of the particles in the image boxes can be computed merely by
adding or subtracting integral multiples of the box sides. If a particle leaves the box
during the simulation, then it is replaced by an imaged particle that enters from the
opposite side, as illustrated in Fig. 10.1. The number of particles within the central
box thus remain constant. The cubical cell and its close relation, the parallelepiped,
are the simplest periodic systems to program and to visualize. However, a cell
of a different shape might be more appropriate for a given simulation. It is often
sensible to choose a periodic cell that reflects the specified property of the system.
For example, allowing the cell to change the shape during a molecular dynamics or
Monte Carlo simulation in the smectic phase might affect the packing. Periodic
boundaries are widely used in computer simulations, but they do have some
drawbacks (Allen and Tildesley 1989). A limitation of the periodic cell is that it
is not possible to achieve fluctuations that have a wavelength larger than the length
of the cell. The range of the interactions present in the system is also important; if
the scale over which the interactions act is larger than the cell size then there should
be no problems.
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10.4 Potential Cutoffs and the Minimum Image Convention

The most time-consuming part of the computer simulations is the calculation of the
energies and forces. For example, for a pairwise model of the potential such as the
Lennard-Jones, the time for calculation of the forces is of order N2 for a N particles
system. In principle, the interactions are calculated for each pair of particles in the
system. In practice, for many of the interaction models, this is not necessary since
the potentials fall off very rapidly with distance as is shown in Fig. 6.6 (Chap. 6).

In such cases, a cut-off applies to the interaction potential with the minimum
image convention (Allen and Tildesley 1989). In the minimum image convention,
each particle interacts at most with just one image of every other particle in the
system, which is repeated infinitely via periodic boundary conditions. When the cut-
off has employed the interactions between all pairs of particles that are further apart
than the cut-off value are modified using some function f (r), taking into account
the closest image.

For example, the Lennard-Jones and electrostatic interactions between a pair of
atoms i and j can be re-written as

VLJ(rij )+ VElec(rij ) = f (rij )

[
4εij γ

LJ
ij

(
σ 12
ij

r12
ij

− σ 6
ij

r6
ij

)
+ γ Elec

ij ke
qiqj

εrij

]
(10.1)

where f (rij ) is either the switch or shift function. In Eq. (10.1), γ LJ
ij and γ Elec

ij are
scaling factors, which are constants defined a priory of simulations. They are often
chosen such that γ LJ

ij = γ Elec
ij = 0 for atoms separated by less than three bonds, and

they are either one or less than one, depending on the force field, for atoms separated
by three bonds, the so-called 1-4 interactions, and moreover, they are both one for
atoms separated by more than three bonds, the so-called non-bonded atoms.

If simple truncation of the potential energy function are used, then the switch
function is given as:

f (rij ) =
{

1, rij < Rc

0, rij ≥ Rc
(10.2)

where Rc is the cutoff distance. It can be seen that a function given by Eq. (10.2)
introduces a discontinuity in the force, and hence it does not guarantee the conserva-
tion of the energy. Therefore, in practice, different molecular dynamics simulation
engines have introduced the so-called switch and/or shift function in either potential
energy or force calculations. In this approach, the distance-dependent function
f (rij ) is determined in terms of the cutoff distance Rc and the so-called switch
distance Rs , such as
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f (rij ) =
⎧
⎨

⎩

1, rij < Rc

S(rij ), Rc ≤ rij ≤ Rs

0, rij > Rs

(10.3)

where, now, S(rij ) is a smooth function decaying to zero between Rc and Rs . In
general, S(rij ) can be designed different for the Lennard-Jones and the electrostatic
interactions, therefore, Eq. (10.1) can also be written as:

VLJ(rij )+ VElec(rij ) =
[

4εij f
LJ(rij )γ

LJ
ij

(
σ 12
ij

r12
ij

− σ 6
ij

r6
ij

)
(10.4)

+ f Elec(rij )γ
Elec
ij ke

qiqj

εrij

]

We can design the so-called potential switch functions, S(rij ), to be a polynomial
function of the distance such that potential energy of non-bonded interactions slowly
decays to zero in the interval [Rc, Rs], where V (r), for r ≤ Rc, is unchanged
and V (Rs) = 0. In this case, the polynomial function is chosen with such degree
that both energy function and its gradient are continuous functions. Such function
is given in the following as designed in CHARMM program (Brooks et al. 2009)
(based on the CHARMM’s manual):

f (rij ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, rij < Rc

(R2
s − r2

ij )
2(R2

s + 2r2
ij − 3R2

c )

(R2
s − R2

c )
3 , Rc ≤ rij ≤ Rs

0, rij > Rs

(10.5)

From Eq. (10.5), it can easily be seen that S(rij ) decays smoothly to zero as rij
increases from Rc to Rs . In addition, the derivative of f (rij ) with respect to the
separation rij is given as:

∂f (rij )

∂rij
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, rij < Rc

−12rij (R2
s − r2

ij )(r
2
ij − R2

c )

(R2
s − R2

c )
3

, Rc ≤ rij ≤ Rs

0, rij > Rs

(10.6)

which indicates that at both Rc and Rs the derivative is equal to zero. Hence, both
the potential function and its derivative are continuous functions.

Other function modifications that can be used are the so-called potential shift
functions, which are used to avoid the sudden changes on the potential energy
function or its gradient. For example, typical potential shift function has the form:
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f (rij ) =

⎧
⎪⎨

⎪⎩

(
1 −

(
rij

Rs

)2
)2

, rij ≤ Rs

0, rij > Rs

(10.7)

and its gradient with respect to rij is given as the following:

∂f (rij )

∂rij
=

⎧
⎪⎨

⎪⎩
−4

rij

R2
s

(
1 −

(
rij

Rs

)2
)
, rij ≤ Rs

0, rij > Rs

(10.8)

It can be seen that both potential function and its gradient decay smoothly to zero at
rij = Rs , and hence they are continuous functions of the distance.

Another form of the potential shift function is given as the following:

f (rij ) =
⎧
⎨

⎩

(
1 − rij

Rs

)2

, rij ≤ Rs

0, rij > Rs

(10.9)

The gradient with respect to rij is given as the following:

∂f (rij )

∂rij
=

⎧
⎨

⎩
− 2

Rs

(
1 − rij

Rs

)
, rij ≤ Rs

0, rij > Rs

(10.10)

These two potential shift functions are better suited to electrostatic potential
interactions when used without the Ewald summation to correct for long-range
interactions. For Lennard-Jones potential interactions, it is recommended to use the
potential switch functions of the form given by Eq. (10.5). Note that the potential
shift function of the form as in Eq. (10.9) used for the electrostatic interactions as
follows:

V ′
Elec(rij ) = ke

qiqj

εrij
f (rij )

yields the following gradient of the potential

∂V ′
Elec(rij )

∂rij
= −ke

qiqj

εr2
ij

(
1 − rij

Rs

)2

− ke
qiqj

εrij

2

Rs

(
1 − rij

Rs

)
(10.11)

= −ke
qiqj

εr2
ij

+ ke
qiqj

εR2
s

= ∂VElec(rij )

∂rij
+ ke

qiqj

εR2
s
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where
∂VElec(rij )

∂rij
represents the gradient of unmodified potential energy function,

and the second term is a constant term, which represents the force shift. That is why
sometimes this method is also called force shift.

To provide a smooth separation between the fast and slow forces, in particular in
multiple-time step integration schemes, the so-called force switching functions are
also used. The force switching function is applied as the following (Schlick 2010):

F
LJ, Elec
fast (rij ) = f (rij )F

LJ, Elec(rij ) (10.12)

F
LJ, Elec
slow (rij ) =

(
1 − f (rij )

)
F LJ, Elec(rij )

where the switching function is defined as follows:

f (rij ) =

⎧
⎪⎨

⎪⎩

1, rij < Rc

1 + (
S(rij )

)2 (2S(rij )− 3
)
, Rc ≤ rij ≤ Rs

0, rij > Rs

(10.13)

where

S(r) = r2 − R2
c

R2
s − R2

c

When periodic boundary conditions are used, the cut-off must not be so large
that a particle sees its image or the same particle twice: the cut-off is limited to no
more than half of the length of the cell in the case of the cubical cell; for rectangular
cells, it must be smaller than half of the length of the shortest side.

10.5 Neighbor Lists

The use of the cut-off may not significantly reduce the time required to compute
the number of interactions. That is because to decide if every pair of particles is
close enough to calculate their interaction energy, we need to figure the distance
between the particles in each pair in the system. Verlet (Allen and Tildesley 1989)
proposed a method that would significantly decrease the time of calculation of the
energy and forces, by keeping a stored list of the nearest neighbors to molecule i

which are all particles within the cut-off distance, together with all particles that are
slightly further away than the cut-off distance (see Fig. 10.2). For the simulations of
the multi-sites molecules, the upper limit on the cut-off may also be affected by the
size of the molecules. That is most efficiently done using a large pointer array P

of neighbor lists as described in Allen and Tildesley (1989) and Leach (2001) and
illustrated in Fig. 10.2.
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Fig. 10.2 Illustration of the pointer and neighbor arrays used to implement the neighbor list

The pointer array P indicates where in the neighboring list array the first and
the last neighbor for that atom is located. The neighbors of the atom i are stored in
elements P [i] through P [i] → first and P [i] → last of the pointer array P [i] until
P [i] → next = NULL, which indicate that the neighbor list of atom i finishes
and the neighbor list of the next atom starts. Once the neighbor lists create, the
program does not check through all atoms but only those within the list for atom i

and the computation time is of order N (number of atoms in the system). The nearest
neighboring lists to atoms are updated once a specified criterion satisfies, such as
one of the atoms displaces more than RL − RC. The computation time required to
update it is of order N2. Usually, the difference RL−RC is in the range 1−2 Å. It is
worth noting that large values of RL − RC yield a less often update of the neighbor
lists; however, it increases the length of the neighbor lists for the atoms. On the other
hand, small values of RL−RC produces short neighbor lists for the atoms, however,
more often requires to update the neighbor lists. Therefore, practically, it is a trade
off the choice of RL and RC.

10.6 Cell Lists

The cell lists is another approach used to reduce the computational efforts for
calculation of the energy and forces in the MD simulations (Allen and Tildesley
1989). In this approach, the simulation box is partitioned into cells, as shown in
Fig. 10.3, with a side length of each cell taken about the cut-off distance or slightly
bigger. Then, each atom of a cell interacts only with atoms of the same cell or
the other neighbor cells. Since the time for assigning the atoms to cells has a
computation time complexity of O(N), where N is the number of atoms, then the
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Fig. 10.3 Illustration of the
simulation box partition used
to implement the cell list

complexity of the energy and force calculations is of order O(N). Each time that an
atom crosses the cells, the list of the atoms in the corresponding cells updates.

It is worth noting that the combination of the neighbor lists and cell lists
approaches is also possible.

10.7 Long-Range Forces

Electrostatic interactions are critical, especially, in biomolecular systems. Compared
to van der Waals and covalent interactions, their range is relatively long, because of
electrostatic interactions between molecules or parts of molecules at a distance r

from each other decrease only slowly with increasing value of r . In particular, inter-
action energy, W , between two charged molecules is proportional to r−1, while the
corresponding force, F = −∇W , is proportional to r−2. The interactions between
a neutral molecule with a dipole moment and a charged molecule is proportional to
r−2, and the corresponding force is proportional to r−3. Furthermore, the interaction
energy between two neutral molecules with dipole moments is proportional to r−3,
while the corresponding force is proportional to r−4.

By considering in this multipole expansion, the quadrupole moments or octupole
moments, it can be shown that even the interaction between two neutral molecules
without dipole moments, but with quadrupole moments is proportional to r−5, so it
has a longer range than the van der Waals interactions, which is proportional to r−6.
If we consider the electrostatic interaction energy of either a single charge, dipole, or
quadrupole with all the charges, dipoles, and quadrupoles surrounding it, we have to
integrate the electrostatic interaction Uelec(r)4πr2 from r to infinity, where 4πr2dr

is the volume of the spherical shell between r and r + dr surrounding the central
charge, dipole, or quadrupole:

∫ ∞

0
Uelec(r)4πr

2dr (10.14)
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which converges if the following condition is satisfied:

Uelec(r) ∝ r−n, n > 3

Note that the total electrostatic energy of ionic systems depends on the spatial
boundary conditions that restrict the range of the integral Eq. (10.14) in practical
calculations. That indicates that decrease of the pair interaction energies and forces
with interatomic separation r will affect how the long-range interactions are treated
in the force and energy calculations during simulations.

10.7.1 Ewald Summation Method

The Ewald summation method was introduced by Ewald (1921). Based on this
method, the sum of the long-range interactions between particles and all their
infinite periodic images are calculated efficiently. The total electrostatic interaction
energy of a system of N particles in a cubic box of size L and infinite replicas in
periodic boundary condition is given by (Toukmaji and Board 1996)

U = 1

2

∞∑

n=0

′
N∑

i=1

N∑

j=1

qiqj

4πε0 | ri − rj + nL | (10.15)

where qi is the charge of the i-th particle and n is the cell-coordinate vector

n = n1Li + n2Lj + n3Lk

where i, j,k are Cartesian coordinate unit vectors. The origin cell is located at n =
(0, 0, 0) with image cells located at Ln intervals in all three dimensions as n goes
to infinity, as shown in Fig. 10.4.

The sign (′) in the first sum indicates that the terms with i = j are not included
for n = 0.

Fig. 10.4 In a 2D system (a)
the unit cell coordinates and
(b) a 3 × 3 periodic lattice
built from unit cells as
in Toukmaji and Board
(1996)
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According to the Ewald method, the potential energy of Eq. (10.15) can be
expressed as a sum three terms

UEwald = Ur + Um + U0 (10.16)

where Ur is the real space sum, Um is the reciprocal sum and U0 is the self-term, a
constant term. These three terms are given, respectively as:

Ur = 1

2

N ′∑

i,j

∞∑

n=0

qiqj

4πε0

erfc(αrij,n)

rij,n
(10.17)

Um = 1

2πV

N∑

i,j

qiqj

4πε0

∑

m�=0

exp
(−(πm/α)2

)
cos

(
2πm · (ri − rj )

)

m2 (10.18)

U0 = −α√
π

N∑

i=1

q2
i

4πε0
(10.19)

where

rij,n =| ri − rj + nL |

V denotes the volume of the simulation box, m = (l, j, k) is the reciprocal-space
vector, and erfc is the complementary error function, given as

erfc(x) = 2√
π

∫ ∞

x

exp(−t2)dt

It should be noted that this summation involving the error function converges very
fast and for distances larger than a cutoff value its value can be omitted. Specifically,
α is chosen such that the only terms in the series of Ur are those for which | n |= 0.

The reciprocal sum Um also converges much faster than the first term Ur . But
the number of terms increases with the width α. Hence, there is a need for a
balance between the real-space and reciprocal-space sums. Here, the first term Ur

converges more rapidly for large α, whereas the second Um converges more rapidly
for small α. Following the discussion in Toukmaji and Board (1996), α is large
for small systems such that the real-space sum extends up to the nearest neighbors
of the original cell. In Toukmaji and Board (1996) (and the reference therein), a
value of α = √

π/L is suggested, which provides an equal rate of convergence
for both direct and reciprocal-space terms. However, for large systems (typically,
N > 104 (Toukmaji and Board 1996)), using minimum-image convention with
a cutoff radius smaller than L/2, larger α are used. Based on our experience,
for simulations of macromolecular systems in explicit solvent using CHARMM
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program (Brooks et al. 2009) with a cutoff radius in the range 10 − 12 Å, typical
value of α is α = 5/L.

The self-term U0 is a correction term that cancels out the interaction of each of
the introduced artificial counter-charges with itself.

Another term is also added depending on the medium that surrounds the sphere
of simulation box. If the surrounding medium is a vacuum, i.e. with a relative
permittivity 1, then the following term is added

Ucorr = 2π

3V
|

N∑

i=1

qi

4πε0
ri |2 (10.20)

This term is zero, if the surrounding medium is a conductor, i.e. with an infinite
relative permittivity.

The Ewald sum is an accurate way for how to treat the long-range forces in
an MD simulation. It has been used in simulations of highly charged systems
and to other systems as well, such as protein, DNA and lipid bilayers where the
electrostatic effects are significant.

The Ewald summation is computationally very expensive to implement. If α is
allowed to vary, the algorithm can be made to scale as N3/2. However, the problem
can be that for these α, the range of electrostatic interactions are incompatible
with the scope of the van der Waals interactions. There have been other methods
introduced to speed up computational demands for calculation of the reciprocal
space terms. For example, using the polynomial approximations, which, however,
do not solve unfavorable N2 scaling. Another proposed method is to use Fast Fourier
Transform (FFT) for calculation of the reciprocal space summation, which scales as
N lnN . This method combined with using a large value of α, such that interatomic
interactions are negligible for rij greater than some cutoff distance (typically, 9 Å),
can reduce the real-space summation to order of N and the order of the entire
algorithm is N lnN .

A known approach for implementation of FFT method is particle-mesh
method (Hockney and Eastwood 1988; Darden et al. 1993) or alternative variants,
such as particle-particle-particle-mesh method (Luty et al. 1994, 1995). Unified
version of these algorithms has also been discussed as an alternative for increasing
the accuracy (Deserno and Holm 1998a,b).

The Ewald method has been widely used to simulate highly polar or charged
systems, and it is often used to study different types of solid-state materials. Of
particular interest, are the applications of the method for analyzing large molecular
systems, such as proteins, DNA and their complexes (York et al. 1994; Darden et al.
1999). The nature of DNA systems make the use of the particle-mesh Ewald method
particularly crucial for dealing with long-range electrostatic interactions during the
simulations, producing more stable trajectories (Cheatham et al. 1995).
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10.7.2 A Physical Perspective of Ewald Method

If the system is neutral, i.e.
∑N

i=1 qi = 0, then Eq. (10.15) can be written as the
following (Toukmaji and Board 1996):

∑

n

1

| n |F(n)+
∑

m

1

| m | (1 − F(m)) (10.21)

Since F(n) decays fast as n → ∞, the first series in the real space converges rapidly.
Moreover, in the second series, the term (1 − F(m))/ | m | in reciprocal space is a
smooth continuous function, therefore, its Fourier transform decays rapidly.

Physically, each point partial charge is enveloped by a Gaussian charge den-
sity distribution of equal magnitude but opposite sign with a charge density as
follows (Allen and Tildesley 1989):

ρi(r) = qiα
3

√
π3

exp
(
−α2r2

)

Here, α is a positive parameter representing the width of the distribution, and r
is the position vector with respect to the center of the distribution. The Gaussian
charge distribution surrounding each charge acts as a screening of the charge-charge
interactions between the neighboring point-charges, and hence reducing the net
interaction to a short-range interaction. Therefore, we expect that the summations
over the charges and their images in real space converge rapidly.

In reciprocal space, in contrast to the real space, another Gaussian charge
distribution is added around each charge of the same sign as the point charge. Then,
the sum is performed in the reciprocal space using the Fourier transforms.

10.7.3 Choice of Ewald Summation Parameters

There is three parameter that determines the convergence of each term in
Eq. (10.16). The first parameter is nmax , which is an integer that determines
the range of the real-space sum by controlling the maximum number of image
cells. The second parameter is mmax , which also is an integer that determines the
summation range in reciprocal space and the number of vectors in this space. The
third parameter is α, defining the Ewald convergence parameter that gives the rate
of relative convergence between the real and reciprocal spaces. From Eq. (10.17),
it can be seen that as α → ∞, the function erfc(αx) → 0, that is large values of
α yield a narrow Gaussian distribution, and hence the real-space sum converges
faster. That is because a smaller number of n vectors are generated, nmax is small
sufficiently that the sum converges rapidly. In contrast, small values of α make the
reciprocal-space sum to converge faster, because
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α → 0, exp(−x/α) → 0

and hence only a small number of mmax is sufficient for the reciprocal-space sum to
converge rapidly. Typically, mmax = 5 is sufficient enough to make the reciprocal-
space sum to converge at a reasonable speed.

The input parameters that will determine the choice of the above parameters are
as follows (Toukmaji and Board 1996):

1. Number of point-charges, N : larger systems will require a large value of α and Rc

to limit the number of pairs charge-charge such that the real-space sum converges
faster.

2. Desired accuracy: Larger values of Rc (or, nmax and mmax) increases the
accuracy, but increases the computation cost of the short-range interactions.

3. CPU time: Increasing the value of α yields less work done from the com-
putational point of view on the calculation of the real sum, which is the
time-consuming part.

4. Cutoff radius, Rc: Smaller values of the cutoff, Rc, which means larger values
of α, needs to be taken such that the real-space sum converges faster with a
reasonable number of n space vectors.

It can be seen that the choice of these parameters is a trade-off between the
accuracy and computational efforts. The following are suggested for α for a system
size of N ≤ 10,000 (Toukmaji and Board 1996)

α = 1

2

(
N1/3 + βL

2Rc

)

where β is an adjustable parameter that depends on the system taken to be β = 4
for Sodium Chloride. Other values are also suggested, such as (Toukmaji and Board
1996):

α ≈ 3.5

Rc

or

α ≈ √− ln δ

where δ is the expected accuracy ensuring that the maximum term neglected is O(δ).

10.7.4 Improved Ewald Summation

To improve the convergence of the Ewald equations, Eq. (10.17), the following
changes have suggested, which replace the double loop in the reciprocal-space with
a single loop sum:
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Um = 1

2πV

∑

m�=0

exp
(−(πm/α)2

)

m2

N∑

i,j

qiqj

4πε0
Re

{
exp

(
2πim · (ri − rj )

)}

(10.22)

= ke

2πV

∑

m�=0

exp
(−(πm/α)2

)

m2

N∑

i,j

qiqj cos
(
2πm · (ri − rj )

)

where

ke = 1

4πε0

Using the trigonometric relation

cos(α − β) = cosα cosβ + sinα sinβ

we obtain

Um = ke

2πV

∑

m�=0

exp
(−(πm/α)2

)

m2 (10.23)

×
N∑

i,j

qiqj
[
cos (2πm · ri ) cos

(
2πm · rj

)

+ sin (2πm · ri ) sin
(
2πm · rj

)]

= ke

2πV

∑

m�=0

exp
(−(πm/α)2

)

m2

⎡

⎣
(

n∑

i=1

qi cos(2πm · ri )

)2

+
(

n∑

i=1

qi sin(2πm · ri )

)2
⎤

⎦

Denoting S(m) the structure factor:

S(m) =
N∑

i=1

qi exp(2πimri )

and that the complex conjugate is

S∗(m) =
N∑

i=1

qi exp(−2πimri )
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we obtain

S(m)S∗(m) ≡| S(m) |2=
[

N∑

i=1

qi cos(2πmri )

]2

+
[

N∑

i=1

qi sin(2πmri )

]2

Then, Eq. (10.23) can be written as

Um = ke

2πV

∑

m�=0

exp
(−(πm/α)2

)

m2
| S(m) |2 (10.24)

It can be seen that the double sum over i and j in Eq. (10.22), which has a
time complexity O(N2), is transformed in a single sum over i, which has a time
complexity of O(N).

10.7.5 Particle-Particle Particle-Mesh Ewald

In the following, we will introduce the Particle-Particle Particle-Mesh (PPPM)
method developed (Hockney and Eastwood 1981; Luty et al. 1994; Rajagopal and
Needs 1994) as described in Toukmaji and Board (1996). Based on this method,
the long-range interactions are the sum of two terms: the so-called short-range
interaction, which includes particle-particle interaction up to a cutoff distance, and
the second term, named as the reference, which includes the so-called long-range
interaction that is a smooth function and it is approximated on a mesh grid.

According to Luty et al. (1994), as a charge distribution for the Ewald sum is
used a sphere with a uniform decreasing density, σ(r), given as:

σ(r) =
⎧
⎨

⎩

48

πa4

(a
2
− r

)
, r <

a

2
0, r ≥ a

2

(10.25)

where a is an adjustable parameter. The short-range interaction energy between two
particles is calculated using the cutoff Rc = 0.7a as (Toukmaji and Board 1996)

USR
(
ξij

) = ke

(
2

aξij
− 1

70a

7∑

n=−1

Cnξ
n
ij

)
, 0 ≤ ξij < 2 (10.26)

where ξij = 2rij /a and

C−1···7 =
{
(0, 208, 0, −112, 0, −14, −8, 3) , 0 ≤ ξij ≤ 1
(12, 128, 224, −448, 280, −56, −14, 8, −1) , 1 < ξij ≤ 2
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While the long-range potential interaction energy is calculated in reciprocal-
space as

ÛLR(k) = ρ̂(k)Ĝ(k) (10.27)

where ˆ· · · denotes the Fourier transform of the function and Ĝ(k) is the so-called
influence function given as

Ĝ(k) = σ̂ (k)
ε0k2

The long-range term is computed following these steps (Toukmaji and Board
1996):

1. Create a three-dimension grid and assign each point-charge to this grid. Then,
based on this assignment we can calculate the charge distribution at each grid
point ρ(r), which depends on both charge distribution σ(r) and assignment
function in the grid.

2. Calculate ρ̂(k) using the Fourier transform, then using Eq. (10.27), we calculate
ÛLR(k). The real-space of the long-range term, ULR(r) is calculated using the
inverse Fourier transform of ÛLR(k).

3. Calculate the grid-defined electrostatic forces using numerical differentiation, for
example, by employing 4-point central differentiated method.

4. Interpolate the electrostatic potential function from the grid point positions to
particle positions using the same function in the step (1).

It has been shown that the PPPM algorithm has a time complexity of the computa-
tion O(N logN).

It is worth noting that the influence function Ĝ(k) is system and configuration
specific function that means that for each new system or new configuration, a
new optimal Ĝ(k) has to be computed. Besides, Ĝ(k) depends on the size and
charge shape of the system. Moreover, in the PPPM method, the accuracy of the
calculations depends on the grid size, that means, smaller grid size more accurate
is the computation, however, on the other hand, increasing the number of grid
points increases the computation complexity of the algorithm. Also, the accuracy
is influenced by the force calculations in each grid point using the numerical
differentiation of the potential.

10.7.6 Particle-Mesh Ewald

The Particle-Mesh Ewald (PME) method (Darden et al. 1993) decomposes the
potential energy function into two terms, namely the standard direct and reciprocal
sums of the Ewald approach. Besides, PME uses the standard Gaussian charge
distributions. In Eq. (10.17), the direct summation is calculated explicitly using
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the cutoff radius, and the reciprocal sum is computed using the Fast Fourier
Transformation method with convolutions on the grid points. In PME the charges
are interpolated to the grid points. The advantage of the PME method compare to the
PPPM method is that in the PME approach the forces are calculated analytically by
differentiating the energy function, and hence additionally reducing the memory
requirements significantly. The PME is considered a highly accurate method,
achieving an accuracy of 10−6 on the relative force error with less computational
efforts compared to other approaches.

In the PME, the time complexity of the algorithm is O(N logN) that indicates
the time complexity of the calculation of the reciprocal sum using three-dimensional
FFT. In particular, the reciprocal sum, Um, is calculated using Eq. (10.24) with
S(m) ≈ S̃(m), where S̃(m) is given as (Toukmaji and Board 1996)

S̃(m) =
∑

k1,k2,k3

Q(k1, k2, k3) exp

(
2πi

(
m1k1

K1
+ m2k2

K2
+ m3k3

K3

))
(10.28)

≡ F̂Q(m1,m2,m3)

where F̂Q(m1,m2,m3) is the three-dimensional FFT of the charge matrix Q. Here,
the matrix Q is obtained using the interpolation of the point-charges uniformly in a
three-dimensional grid with dimensions (K1, K2, K3) of the simulation cell.

Combining Eqs. (10.24) and (10.28), we obtain

Ũm = ke

2πV

∑

m�=0

exp
(−(πm/α)2

)

m2
| F̂Q(m) |2 (10.29)

which can be written as convolution (Toukmaji and Board 1996)

Ũm = ke

2

K1−1∑

k1=0

K2−1∑

k2=0

K3−1∑

k3=0

Q(k1, k2, k3)(Ûm ∗Q)(k1, k2, k3) (10.30)

where (Ûm ∗ Q) denotes the convolution of the reciprocal-space potential energy
function Ûm with real-space charge matrix Q.

10.7.7 Multipole Ewald Summation Methods

The primary goal of the multipole-based Ewald methods is to decompose the
potential energy functions into the term representing the short-range term, which is
computed directly, and the long-range term, which is approximated using multipole
expansions. Let us consider first the electrostatic potential VElec(r1, · · · , rN):
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VElec(r1, · · · , rN) = 1

2

N∑

i=1

N∑

j=1 �=i

ke
qiqj

εrij
= 1

2

N∑

i=1

qiΦ(ri) (10.31)

where

Φ(ri) = ke

ε

N∑

j=1 �=i

qj

rij
(10.32)

denotes the electric potential created by all other charges at the position where the
charge i is placed.

Consider a system of N charges distributed in a three-dimension grid represented
by spherical coordinates (ρi, αi, βi) inside a sphere of radius a (| ρi |< a).
In spherical coordinates, every point in three-dimension outside the sphere is
represented as

r ≡ (r, θ, φ), r > a

An expansion at the point ri around the origin can be written in terms of infinite
multipoles as (Toukmaji and Board 1996; Frenkel and Smit 2001; Schlick 2010):

Φ(ri) =
∞∑

n=0

n∑

m=−n

Mm
n

rn+1
i

Ym
n (θ, φ) (10.33)

where the functions Ym
n (θ, φ) is the spherical harmonic polynomial or multipoles

and the Mm
n are the moments of the expansion. These are defined as the following,

based on the literature (Schlick 2010):
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(10.34)
and

Mm
n =

N∑

j=1 �=i

keqj

ε
rnj Y

−m
n (θj , φj ) (10.35)

with

Am
n = (−1)n√

(n−m)!(n+m)!
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The relationship between the spherical harmonic polynomial and the so-called
associated Lengendre polynomials of degree n, Pm

n , is given as

Ym
n (θ, φ) =

√
(n− | m |)!
(n+ | m |)!P

|m|
n (cos θ) exp(imφ) (10.36)

where

Pm
n (x) = (−1)m(1 − x2)m/2 dm

dxm
Pn(x) (10.37)

The expansion power p is a criteria for achieving a certain accuracy of the
calculations, defined as

|
∞∑

n=p+1

n∑

m=−n

Mm
n (ri)

rn+1
i

Ym
n (θ, φ) |≤

∑N
i=1 | qi |
r − a

(a
r

)p+1 = ε (10.38)

To reduce ε, we can either increase p or decrease the radius a.
This method is known as the fast multipole algorithm developed in Greengard

and Rokhlin (1987). Other variants of multipole method have also been developed,
such as the reduced cell multipole method (Ding et al. 1992), the Particle-Particle
Particle-Mesh/Multipole expansion method (Shimada et al. 1993, 1994) and the
Macroscopic Multipole method (Toukmaji and Board 1996). Today’s improvements
on the computer architecture encourage the development of fast algorithms to com-
pute the electrostatic interactions of macromolecules using the methods mentioned
above, as discussed in Hardy et al. (2011) about the fast calculations of electrostatics
in the Graphical Processing Unit (GPU).

10.7.8 Reaction Field Method

According to this approach, the molecule is surrounded by a sphere with radius
equal to the cutoff distance, Rc. Then, the electrostatic interactions with all
molecules inside the sphere are calculated using explicit models. The region outside
the cavity will be assumed a continuous dielectric medium with a dielectric constant
equal to εRF. The outside region additionally will be considered polarized due to the
electric field created by molecules inside the cavity. This polarization will create an
electric field, the so-called reaction field, Ei , inside the cavity given as (Fukuda and
Nakamura 2012):

Ei = ke
2(εRF − 1)

2εRF + 1

1

R3
c

∑

j (rij≤Rc)

μj (10.39)
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Here, μj are the dipoles of the neighbouring molecules within a cutoff distance Rc

of molecule i, which is given as

μj =
∑

ν∈j
qνrν

where the sum is over all atoms ν of the molecule j and rν is the vector position of
the atom ν.

Now, the interaction energy between the molecule i and the reaction field is

Er = Ei · μi = ke
2(εRF − 1)

2εRF + 1

1

R3
c

∑

j (rij≤Rc)

μi · μj (10.40)

Following Fukuda and Nakamura (2012), we assume that the total charge inside
the cavity is zero and that each molecule i is too small such that the set of atoms
inside the cavity of a molecule of the system equals the set of atoms inside the cavity
centered at each atom of that molecule. Using these assumptions, we can write that
the reaction field interaction energy between any pair of the atoms is:

V Corr
RF (rij ) = ke

qiqj r
2
ij

R3
c

εRF − 1

2εRF + 1
, for rij ≥ Rc (10.41)

This correction is added to the short-range potential energy of the molecule-
molecule interaction accounting for long range corrections as follows:

VRF(rij ) = ke
qiqj

rij

(
1 + r3

ij

R3
c

εRF − 1

2εRF + 1

)
(10.42)

There are a few drawbacks arising from the assumptions made by the approach
(Leach 2001). The first problem is related to the discontinuity of the potential energy
function and force if the number of molecules within the cutoff range varies during
the simulation run. This problem, practically, can be avoided by using the switching
functions at the border between the reaction sphere and surrounding dielectric
media:

VRF(rij ) = ke
qiqj

rij

(
1 + r3

ij

R3
c

εRF − 1

2εRF + 1

)
− ke

qiqj

Rc

3εRF

2εRF + 1
(10.43)

which is such that VRF(Rc) = 0.
Secondly, in this approach assuming that a constant dielectric constant charac-

terizes the surrounding dielectric medium is a good approximation if this media is a
homogeneous fluid; otherwise, extra efforts must be taken to estimate the dielectric
constant of the surrounding media using, for example, mean field approximation.
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10.8 Equilibration

A trajectory during MD simulations is a sequence of configurations for a given
system saved at regular time steps, let say every Nsteps. For example, for a system
of N particles, every configuration of system is a vector of 3N dimensions

r(t) ≡ (r1(t), r2(t), · · · , rN(t))T

where ri (t) = (xi(t), yi(t), zi(t)) are the coordinates of the i-th atom. If we
consider a path through the configurational phase space, then r(t) is the vector of
coordinates of all atoms at the time step t in this path. The path r(t) is called a
trajectory.

In general, the values of any physical property, such as temperature, pressure,
energy, and so on, fluctuate as we move along the trajectory. The average value of
a physical property, P(r), overall the configurations visited by the system during a
trajectory with T steps is

〈P〉T =
T∑

t=1

P(r(t))

Assuming that the trajectory is ergodic, then the time averages are equal to ensemble
averages, that is:

〈P〉 = lim
T→∞〈P〉T

In practice, MD simulations run for a finite time, typically, of order hundred of
nanoseconds, hence the average over configurations provides only an estimate of
〈P〉.

As an example, Fig. 10.5 shows the running averages versus T along with a
trajectory. The magnitude of the fluctuations along the average 〈P〉 equals the
statistical uncertainty in the average. For this, we can divide the trajectory into
blocks of the length L. Assuming that L are long enough, then averages on each
block can be considered statistically independent. Let us denote with 〈P〉m the
average of P(r(t)) over the configurations of the block m, then

〈P〉T = 1

M

M∑

m=1

〈P〉m

where M = T/L is the total number of blocks.
The standard deviation gives the statistical error of the average value as
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Fig. 10.5 Running averages along a MD trajectory

Δ〈P〉T = 1

M

√√√√
M∑

m=1

(〈P〉m − 〈P〉T )2

which for T → ∞ tends to zero.
The prove of the ergodic hypothesis is difficult for any system. However, there

can be a simple evaluation of the ergodic hypothesis using MD simulation results
from different independent trajectories. In that case, averages of a macroscopic
property, for example, total energy or pressure of an ergodic system, over two differ-
ent independent trajectories should be equal. For that criteria to be satisfied, averages
over a trajectory should be identical to the statistical path over conformation space.

It can be argued that correlations in low-frequency atomic displacements of order
one nanosecond are not sampled efficiently due in part to the fact that trajectory
remains constrained only in some region of the phase space, especially for complex
molecular systems. Practically, the following quantity is used as an estimation of
the simulation length needed to guarantee that the ergodic hypothesis is satisfied:

E(t) = 1

Nbins

Nbins∑

i=1

(
P(1)
i (t)− P(2)

i (t)
)2

(10.44)

where P(j)
i is the value of the quantity measured from the j -th trajectory at the

bin i and Nbins is the total number of histogram bins. In general, the quantity P
can be any macroscopic property of the system, for instance, root mean square
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deviation, energy, and so on, and E is presented as a function of the simulation
time t . If the system is ergodic, then E should decay to zero as 1/Dτ , where D

is the generalized diffusion constant, and τ is a timescale for self-averaging in the
simulation. The decay of the ergodic measure, E(t), to zero in the limit of the long
times is considered a necessary condition for the system’s average properties to
correspond to equilibrium thermodynamic averages.



Chapter 11
Symplectic and Time Reversible
Integrator

In this chapter, we will discuss numerical integrator algorithms used for solving
differential equations used in molecular dynamics simulations. In particular, we will
propose different numerical integrator algorithms, which satisfy time reversibility or
symplectic properties.

11.1 Flow-Maps

A discrete flow-map is an infinitesimal canonical transformation when the time t

advances from t to t +Δt by a small time step Δt :

ΦΔt : �2d �−→ �2d

where �2d is an 2d-dimensional manifold with coordinates

(q, p) = (q1, q2, · · · , qd, p1, p2, · · · , pd)

such that

z(t +Δt) = ΦΔt(z(t))

where z(t) = (q(t), p(t)) is the state vector at time t , and q and p are, respectively,
the generalized coordinates and their conjugated momenta. Based on the Chap. 1,
we can write for an infinitesimal canonical transformation that

z(t +Δt) = z(t)+ΔtJ
∂G

∂z
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where J is the 2d × 2d zero-one matrix defined in Chap. 1 (see Eq. (1.109)), and
G(q, p) is the generating function of the infinitesimal canonical transformation such
that in the case of the Hamiltonian system with Hamiltonian function H(q, p) is
given by:

G = J
∂G

∂z
= J∇zH(z) =

(
∂H

∂p
,−∂H

∂q

)

Here, G is the metric tensor.

11.1.1 Symplectic Maps

The term symplectic was first used mathematically by Hermann Weyl and is taken
from the Greek word meaning “twining or plaiting together”. Symplectic systems
consist of a pair of d-dimensional variables, generally position q and momentum p,
“intertwined” by the symplectic two form,

ω = dq ∧ dp . (11.1)

This is an antisymmetric, bilinear form acting on a pair of tangent vectors to
compute the sum of areas of the parallelograms formed by projecting the vectors
onto planes defined by the pairs (qi, pi), i = 1, · · · , d giving,

ω(v,w) =
d∑

i=1

(
vpi

wqi − vqiwpi

)
. (11.2)

A discrete flow-map ΦΔt is symplectic if it preserves the symplectic form (Arnold
1988). If we write the Jacobian matrix of the infinitesimal time transformation as
(see Chap. 1):

M = I +ΔtJ
∂2G

∂z∂z
(11.3)

then the symplectic condition becomes (see also Eq. (1.142)), if we ignore the
second order terms,

MJMT = J (11.4)

or

MT J−1M = J−1 (11.5)
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Here, I is the d × d identity matrix and MT is the transpose of M:

MT = I −Δt
∂2G

∂z∂z
J

11.1.2 Symplecticness of Hamiltonian Flow-Maps

Consider now the continuous flow-map Φt,H of a Hamiltonian system H . To prove
that Φt,H is symplectic we can use the matrix form for the Hamiltonian equations
of motion,

ż = J∇zH(z) , (11.6)

where J is the usual invertible skew-symmetric matrix defined in Chap. 1 (JT =
−J). We define

M(t) = ∂

∂z
Φt,H (11.7)

Note that for the case of discrete flow-maps, M given by Eq. (11.3) is a Taylor
expansion of M(t) given by Eq. (11.7) around Δt , where only the terms up to the
first order retain.

Since M(0) is defined as a symplectic map, for which Eqs. (11.4) and (11.5) hold,
we have to show that

d

dt

[
M(t)T J−1M(t)

]
= 0 . (11.8)

to prove that Φt,H is symplectic flow-map.
For that we can write:

d

dt

[
MT J−1M

]
= MT J−1 d

dt
M +

(
d

dt
M

)T

J−1M

= MT J−1 (J (∇z∇zH(z))M)+
(

MT (∇z∇zH(z)) JT
)

J−1M

= MT (∇z∇zH(z))M − MT (∇z∇zH(z))M = 0 .

If a flow-map is symplectic, it possesses certain integral invariants which relate
to the evolution of subsets of phase-space. One such integral invariant is the
preservation of phase-space area for systems with one degree of freedom, d = 1,
and volume for d > 1, which also follows from Liouville’s theorem (Arnold 1988).
Since the existence of integral invariants, such as this restricts the possible solutions
for a Hamiltonian system, can be an important feature for numerical integrator
algorithms, in particular, for long time results.
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11.1.3 Phase-Space Area Preservation for d = 1

A one degree of freedom symplectic map, Φt : �2 �−→ �2, has a Jacobian,

M(t) = ∂Φt

∂z
=

[
a b

c d

]
(11.9)

for some a, b, c, d ∈ �. Substituting Eq. (11.9) into Eq. (11.5) yields,

ad − bc = 1 ,

indicating that

det [M] = 1

Consider the motion of the volume in a two-dimensional phase space as illustrated
in Fig. 1.6 (see Chap. 1). If we let Γ be a bounded subset of phase-space and Γ̂ =
Φt(Γ ) its image under the flow-map Φt , then the area α(Γ ) is given by,

α(Γ ) =
∫

Γ

dqdp

Similarly, the area α(Γ̂ ) is given by,

α(Γ̂ ) =
∫

Γ̂

dq̂dp̂

=
∫

Γ

det [∇zΦt (z)] dqdp =
∫

Γ

det [M] dqdp

=
∫

Γ

dqdp = α(Γ )

and hence a one degree of freedom symplectic map preserves the area of phase-
space. The proof of the conservation of phase-space volume for d > 1 can be found
in references such as Arnold (1988).

11.1.4 Time-Reversal Symmetry

Newton’s equations of motion possess the geometric property of time-reversibility,
which manifests itself as the invariant of a Hamiltonian H(q, p) under the reflection
symmetry p �−→ −p. The equations of motion for this Hamiltonian are,
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q̇ = ∇pH(q, p), (11.10)

ṗ = −∇qH(q, p) .

If we assume (q(t), p(t)) is a solution of Eq. (11.10) and define (q̂(t), p̂(t)) =
(q(−t),−p(−t)), we get

d

dt
q̂(t) = −q̇(−t) = −∇pH(q(−t), p(−t)) = ∇pH(q̂(t), p̂(t)), (11.11)

d

dt
p̂(t) = ṗ(−t) = −∇qH(q(−t), p(−t)) = ∇qH(q̂(t), p̂(t)), (11.12)

since H(q, p) is even in p for Newtonian mechanics, giving ∇qH even in p and
∇pH odd in p. This shows that (q̂(t); p̂(t)) is a solution of Eq. (11.10). This
invariant implies that for every solution of the Hamiltonian system there is another
one whose trajectory is in the opposite direction with negated momentum.

This time-reversal invariant can be written for z = (q, p)

H(z) = H(Jz) (11.13)

For the vector field of a Hamiltonian of the form Eq. (11.6) this gives

f (z) = −Jf (Jz) (11.14)

where f (z) = J∇zH(z), since for any flow map Φ−t,H = [
Φt,H

]−1. A mapping Ψ

with the property Ψ−t,H = [
Ψt,H

]−1 is said to be symmetric or self-adjoint.

11.2 Symplectic and Hamiltonian Splitting Methods

In general, the Hamiltonian systems of interest may not have an analytical solution,
and this has led to the development of numerical integrator algorithms, which solve
the equations of motion by taking discrete time steps until the required integration
time, T , is reached.

That was first seen in simple schemes such as Euler’s method, but both the
mathematician De Vogalaere and the physicist Ruth had postulated that if the
numerical integrator possessed some of the properties of Hamiltonian system’s flow-
map then simulations would display improved behavior. This idea has led to the
development and classification of Geometric Integrator Algorithms, where their use
preserves geometrical properties of the original system. For Hamiltonian systems,
the symplectic property is perhaps the most important geometrically and can lead
to efficient explicit Hamiltonian splitting methods as discussed by Leimkuhler and
Reich (2004).
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11.2.1 Hamiltonian Splitting Methods

Symplectic numerical integrator algorithms are desirable for the approximation of
Hamiltonian flow-maps but, for complicated systems, can lead to implicit methods
which are difficult to solve. From the definition of symplecticness we see that the
composition of symplectic maps is again symplectic and this leads to the idea
of splitting the Hamiltonian. This can be achieved if it is possible to split the
Hamiltonian H into the sum of k ≥ 2 Hamiltonians Hi, i = 1, · · · , k,

H(z) =
k∑

i=1

Hi(z) , (11.15)

where each Hamiltonian equation

ż = J∇zHi(z) , (11.16)

can be solved explicitly. From this the composition method,

ΦΔt = φΔt,H1 ◦ φΔt,H2 ◦ · · · ◦ φΔt,Hk
, (11.17)

is a first-order symplectic integrator.
For the simulation of systems with time-reversal symmetry, in addition to the

symplectic property, a symmetric method is required but methods composed in the
above manner are generally not symmetric. To achieve this the same Hamiltonian
splitting can be utilized but composed in a symmetric manner as follows,

Φ̂Δt = φΔt/2,H1 ◦ φΔt/2,H2 ◦ · · · ◦ φΔt,Hk
◦ · · · ◦ φΔt/2,H2 ◦ φΔt/2,H1 . (11.18)

Using this relation, we can derive

[
Φ̂−Δt

]−1 = [
φ−Δt/2,H1

]−1 ◦· · ·◦[φ−Δt,Hk

]−1 ◦· · ·◦[φ−Δt/2,H1

]−1
. (11.19)

If each φΔt,Hi
is symmetric then we get:

[
Φ̂−Δt

]−1 = Φ̂Δt .

This yields a symplectic, time-reversible mapping which is suitable for Hamiltonian
systems based on Newton’s equations. In addition it can be shown (Leimkuhler and
Reich 2004) that symmetric methods necessarily have order two.

If the condition that each Hamiltonian vector field can be solved explicitly is not
satisfied, then the splitting methods can still be employed. Here, if the majority of
solutions are explicit, splitting leads to a reduced number of simplified vector fields
which need to be solved implicitly.
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11.3 Liouville Formalism and Trotter Formula

For the systems under investigation, also discussed in Chap. 6, we can apply the
Liouville formalism of the Hamiltonian dynamics to find the time derivative of a set

f ≡ (p, q)

of configuration and momentum variables along the trajectory (Allen and Tildesley
1989)

df
dt

=
∑

j

(
q̇j

∂f
∂qj

+ ṗj

∂f
∂pj

)
, (11.20)

where the summation is over all degrees of freedom in the system and

q̇j = ∂H

∂pj

, (11.21)

ṗj = − ∂H

∂qj
(11.22)

are the Hamiltonian equations of motion (Goldstein 2002). The Liouvillean opera-
tor, iL, is defined as (Allen and Tildesley 1989):

iL =
∑

j

(
q̇j

∂

∂qj
+ ṗj

∂

∂pj

)
.

The exponential operator O(t) ≡ eiLt is the classical propagator, which evolves the
system phase space point from the initial state (q(0), p(0)) to the state (q(t), p(t))

by acting on f as (Allen and Tildesley 1989) f(t) = O(t)f(0). It satisfies the time-
symmetry property O(Δt)O(−Δt) = 1, therefore the flow map is time-reversible.
This formalism is completely general and it can also be applied to non-Hamiltonian
systems sometimes leading to time-reversible numerical integrator algorithms as
described in Martyna et al. (1996). In this case, the function f can be the state
vector (ηk, πk, p, q) for the NVT or (ηk, πk, ε, πε, p, q) (k = 1, · · · ,M) for
NPT ensembles as presented here.

In general, the action of evolution operator, O(t), on the state vector cannot be
solved exactly. Therefore, a short time approximation to the true operator, accurate
at time Δt = t/n is applied n times in succession to evolve the system considering
small time steps Δt used in MD simulations. Thus, if the Hamiltonian of system can
be written as:

H =
∑

k

Hk
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then using the Trotter formula (Trotter 1959; Raedt and Raedt 1983), we can write

O(t) =
(
∏

k

eiLkΔt

)n

+O
(
Δtp+1/np

)
, (11.23)

which has an overall accuracy of order Δtp+1/np for a pth order factorisation
where iLk is the Liouville operator of the associated variables with the Hamiltonian
function Hk . For example for p = 2 we can write

H = H1 +H2

and the Poisson bracket

{H1,H2} = ∂H1

∂q

∂H2

∂p
− ∂H1

∂p

∂H2

∂q
�= 0

The propagator operator can be written as:

exp(iLΔt) = exp(iL1Δt/2) exp(iL2Δt) exp(iL1Δt/2)+O(Δt3), (11.24)

which is known as symmetric Trotter factorisation or Strang splitting (Strang 1968)
and it is correct to the second order. The Strang splitting scheme can be applied for
each set of two operators, in order to obtain time reversible and explicit integrator
algorithms, in the case of dynamical systems where the Hamiltonian can be split
into terms with a non-vanishing Poisson bracket, Hk (k = 1, 2 · · ·p). Then the time
evolution operator can be written

eiLΔt = ei
Δt
2 L1 · · · ei Δt

2 Lp−1eiΔtLpei
Δt
2 Lp−1 · · · ei Δt

2 L1 +O
(
Δt3

)

≡ φΔt +O(Δt3), (11.25)

which can be considered as a Strang splitting of the pth order of factorisation. We
see that this splitting is also correct to the second order since the factorisation of
each set of two operators is correct to the second order (see equation Eq. (11.24)).
It has been shown elsewhere (Kamberaj et al. 2005) that the limited accuracy in the
numerical integration will not destroy the time reversibility property of the flow map
(φΔtφ−Δt = 1). It is worth noting that similar factorisation schemes have also been
proposed, e.g. see Martyna et al. (1996). Higher order integrator algorithms can also
be generated using Yoshida-Suzuki integration (Yoshida 1990; Suzuki 1991) from
low order integrator algorithms. The splitting is easy to implement, and with low
computation cost, furthermore, it resulted in the integrator algorithms with long-
time stability in terms of energy conservation.

The explicit integration schemes can be straightforward obtained by using the
exponential expansion

exp (a∇x) f (x) = f (x + a), (11.26)
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where a does not depend on x. For extended systems two additional analytical forms
for the exponential operators are obtained with a being a scalar or a matrix, a
containing x. In these cases the following expressions are applied (Martyna et al.
1996):

exp (ax · ∇x) f (x) = f
(
eax

)
, exp ([ax] · ∇x) f (x) = f

(
eax

)
. (11.27)

The exponential matrix ea can be obtained by diagonalisation of a as:

exp (a) = CDC−1, (11.28)

where C is the associated matrix of eigenvectors of the matrix a and D is a diagonal
matrix with diagonal element equal to exponential of the eigenvalues of the matrix a.
Here, for a 3×3 matrix the eigenvalues and eigenvectors are determined analytically
in order to maintain the second order accuracy of the overall integration scheme and
to decrease the computational time needed.

11.4 Microcanonical Ensemble

First we will discuss the NVE ensemble described by the following equations of
motion (as discussed in Chap. 6):

ṗi = −∇U(r),

ṙi = pi/mi, i = 1, · · · , N . (11.29)

The Liouville operator iL(1)
NVE is written as

iL
(1)
NVE = iL1 + iL2, (11.30)

where

iL1 =
N∑

j=1

(
Fj

mj

)
· ∇vj ,

iL2 =
N∑

j=1

vj · ∇qj
, (11.31)

where vj is the velocity of the j th particle (= pj

mj

) and N is the number

of particles of the system. In the limit of the short time-step (Δt), the Strang
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splitting scheme (Strang 1968) can be used, in the form presented here by equation
Eq. (11.25), to generate the classical propagator (Kamberaj et al. 2005)

exp
(
iL

(1)
NVEΔt

)
= exp (iΔtL1/2)

× exp (iΔtL2)

× exp (iΔtL1/2)+O
(
Δt3

)

≡ φΔt +O
(
Δt3

)
. (11.32)

Using this equation, the time reversible numerical integrator can be derived since
the flow map φΔt has the time symmetry property φΔtφ−Δt = 1. Acting with the
operator φΔt onto the state vector at time t = 0 we can update coordinates and
momenta at a later time Δt . Since the forces Fj depend only on the positions q, the
operator exp(iL1Δt/2) becomes a translation operator on the momenta. Similarly,
exp(iL2Δt) is a translation operator on the positions. The resulting algorithm for
translation motion is completely equivalent to the well-known velocity Verlet (Allen
and Tildesley 1989).

The full integration procedure of the translation motion is summarized in
following (Kamberaj et al. 2005)

Algorithm 1 Numerical integrator
 Step 1: Update velocities half-step and positions a full step
For i = 1 to N

vi

(
t + Δt

2

)
= vi (t)+ Δt

2

Fi (t)

mi

,

qi (t +Δt) = qi (t)+Δtvi

(
t + Δt

2

)
,

 Step 2: Calculate forces and update velocity a full step
For i = 1 to N

vi (t +Δt) = vi

(
t + Δt

2

)
+ Δt

2

Fi (t +Δt)

mi

. (11.33)

It is worth noting that the algorithm for translational motion, derived here using
Liouville formalism, is equivalent to the velocity-Verlet algorithm and therefore it
is symplectic.
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11.5 Canonical Ensemble

The integration scheme for the NVT ensemble is also formulated using the approach
described above. First we write the Liouville operator for equations of motion,
equation Eq. (6.29) (Chap. 6), as

iL
(1)
NVT = iL

(1)
NVE + iL

(1)
NHC, (11.34)

where

iL
(1)
NHC =

∑

α

⎛

⎝
Nα∑

j=1

[−π(α)
η1

vj,α] · ∇vj,α

+
M∑

k=1

π(α)
ηk

∂

∂η
(α)
k

+
M−1∑

k=1

[
G

(α)
k

Q
(α)
pk

− π(α)
ηk+1

π(α)
ηk

]
∂

∂π
(α)
ηk

+ G
(α)
M

Q
(α)
pM

∂

∂π
(α)
ηM

)
, (11.35)

where the index α run over all groups of the atoms in the system and G
(α)
k denotes

the thermostat forces given by:

G
(α)
1 =

Nα∑

i=1

p2
i,α

mi,α

− g
(α)
N kBT (11.36)

G
(α)
k = Q(α)

pk

(
π(α)
ηk

)2 − kBT , k = 2, · · · ,M

where g
(α)
N is the number of degrees of freedom associated with group α of atoms.

Similarly to the NVE case, the Strang splitting scheme given by equation
Eq. (11.25) can be used to obtain the evolution operator. Many choices for this
splitting are possible, such as that given in Martyna et al. (1996) and Kamberaj
et al. (2005). The numerical stability of the splitting may depend on how far from the
equilibrium temperature is the initial temperature of the system and the homogeneity
of the system. In addition, the choice of the integration scheme for the thermostat
degrees of freedom may influence the splitting. We will use the following splitting:

exp(iΔtL
(1)
NVT) = exp

(
i
Δt

2
L1

)
exp

⎛

⎝Δt

2

∑

α

Nα∑

j=1

[
−π(α)

η1
vj,α

]
· ∇vj,α

⎞

⎠

× exp

(
Δt

2

∑

α

G
(α)
M

Q
(α)
pM

∂

∂π
(α)
ηM

)



408 11 Symplectic and Time Reversible Integrator

× exp

(
Δt

2
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α

M−1∑

k=1

[
G

(α)
k

Q
(α)
pk

− π(α)
ηk+1

π(α)
ηk

]
∂

∂π
(α)
ηk

)

× exp

(
Δt

M∑

k=1

π(α)
ηk

∂

∂η
(α)
k

)

× exp

(
Δt

2

∑

α

M−1∑

k=1

[
G

(α)
k

Q
(α)
pk

− π(α)
ηk+1

π(α)
ηk

]
∂

∂π
(α)
ηk

)

× exp

(
Δt

2

∑

α

G
(α)
M

Q
(α)
pM

∂

∂π
(α)
ηM

)

× exp (iΔtL2)

× exp

⎛

⎝Δt

2

∑

α

Nα∑

j=1

[
−π(α)

η1
vj,α

]
· ∇vj,α

⎞

⎠ exp

(
iΔt

2
L1

)

+ O(Δt3) ≡ φΔt +O(Δt3), (11.37)

which is correct to the second order. The approach described above for the constant
NVE case is actually straightforward to implement here. Applying the approximate
flow map φΔt on the state vector (ηk, πk, v,q) (k = 1, · · · ,M). First, the operator

exp

(
i
Δt

2
L1

)
acts to update the state vector for each chain thermostat α. It can

be seen that the particle velocities can be updated at the half-time step using the
velocity Verlet scheme described above, while other components remain unchanged.
Then, the operator

exp

⎛

⎝Δt

2

∑

α

Nα∑

j=1

[−π(α)
η1

vj,α] · ∇vj,α

⎞

⎠

scales the output velocities according to Nosé-Hoover thermostats. At this stage, ηk ,
πk , and q, have not changed.

Next, the coordinates of the particles q, using the velocity Verlet scheme is
updated a full-time step. At this step, the extended coordinates and velocities of
each thermostat are also updated using the updated velocities as input to compute
the thermostat forces. In our algorithm the operator

exp

(
t

[
Gk

Qpk

− πk+1πk

]
∂

∂πk

)

is factorized as proposed by Martyna et al. (1996)
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exp

(
t

[
Gk

Qpk

− πk+1πk

]
∂

∂πk

)
= exp

(
− t

2
πk+1πk

∂

∂πk

)

exp

(
tGk

∂

∂πk

)

exp

(
− t

2
πk+1πk

∂

∂πk

)
, (11.38)

where the index α and η are omitted for simplicity in notation. The action of this
operator on πk yields

πk → πk exp (−tπk+1)+ tGk exp

(
− t

2
πk+1

) sinh

(
t

2
πk+1

)

t

2
πk+1

. (11.39)

Here, the first step of the integration finishes. The rest of the evolution operator is
applied in the same way after the forces acting on each particle are calculated at new
particle positions, which represents the second step of the integration. The action of
the full operator to the state vector (η, π, v,q) associated with chain thermostat α is
summarized as following:

Algorithm 2 Numerical integrator for the NVT ensemble
 Step 1: Update the velocities half-step and positions full time step
UPDATENHCP (t → t +Δt/2)
For i ← 1 to N

vi

(
t + Δt

2

)
← vi (t)+ Δt

2

Fi (t)

mi

,

qi (t +Δt) ← qi (t)+Δtvi

(
t + Δt

2

)
,

 Step 2: Calculate F(t +Δt)

For i ← 1 to N

vi (t +Δt) ← vi

(
t + Δt

2

)
+ Δt

2

Fi (t +Δt)

mi

(11.40)

UPDATENHCP (t +Δt/2 → t +Δt)

where UPDATENHCP (δt) includes the following steps:
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Algorithm 3 UPDATENHCP (δt)

For m ← 1 to nc

vi,α (t) ← vi,α(t) exp

(
− δt

2
π
(α)
η1 (t)

)

G
(α)
1

(
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2

)
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(
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1
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(α)
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2

)
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2
G

(α)
M (t)

π
(α)
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(
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2

)
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(
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4
π
(α)
M−k+1(t)

)

×
[

exp

(
− δt

4
π
(α)
M−k+1(t)

)
π
(α)
M−k (t)

+ δt

2
G
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(
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4
π
(α)
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⎥⎥⎦ (k = 1, · · ·M − 1),
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(α)
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(
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2

)
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(α)
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(α)
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(
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×
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× π
(α)
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)
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2
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(
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2
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π
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)
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(k = 1, · · · ,M − 1),
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(t + δt) ← π(α)
ηM

(
t + δt

2

)
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(α)
M

(
t + δt

2

)
,

vi,α (t) ← vi,α(t) exp

(
− δt

2
π(α)
η1

(t + δt)

)
. (11.41)

Here, δt = (Δt/2)/nc where nc is the number of multiple steps.
The term

sinh (x)

x

that appears in the non-factorized result has a singularity for x = 0, which can
be removed by expanding it in a Maclaurin series. Typically, only the first eight
terms are suggested (Martyna et al. 1996; Kamberaj et al. 2005). It has to be noted
that higher order integrator algorithms can be constructed by applying the Yoshida-
Suzuki factorization scheme (Yoshida 1990; Suzuki 1991). Following Martyna et
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Table 11.1 The values of the
(nys , wj ) parameters
involved in the
Yoshida-Suzuki multiple time
steps integrator
algorithms (Yoshida 1990;
Suzuki 1991; Martyna et al.
1996)

nys wj

3 w1 = w3 = 1/(2 − 21/3)

w2 = 1 − 2w1

5 w1 = w2 = w4 = w5 = 1/(4 − 41/3)

w3 = 1 − 2w1

7 w1 = w7 = −1.17767998417887

w2 = w6 = 0.235573213359357

w3 = w5 = 0.78451361047756

w4 = 1 − 2(w1 + w2 + w3)

al. (1996), we have used a multiple time step, denoted nc × nys where (nc, nys) is
the number of inner steps. In this case, UPDATENHCP (t → t + δt/2), equation
Eq. (11.41), is performed in nc × nys steps where δt → wj(Δt/2)/nc. Some of the
values of the (nys, wj ) parameters are given in Table 11.1 as reported in Yoshida
(1990), Suzuki (1991) and Martyna et al. (1996).

The dynamics generated by equations Eq. (6.29) (Chap. 6) in the NVT the
ensemble is not Hamiltonian and hence we can not speak of symplectic integrator
algorithms for the t-flows defined by equations Eq. (11.40). However, the algorithms
are time reversible (for the same reason as the NVE case, φΔtφ−Δt = 1) and second-
order similar to the constant NVE case, since the Trotter factorisation scheme,
equation Eq. (11.37), is again correct to the second order. And as we will show in
the next section these integrator algorithms for the non-microcanonical ensembles
are also stable for long time trajectories, as are the symplectic integrator algorithms
for the NVE ensemble. The algorithm is explicit and can also be implemented in
two steps.

11.6 Isothermal-Isobaric Ensemble

Similarly to the NVT ensemble, the integration scheme for the NPT ensemble is
also formulated using the Liouville formalism.

The Liouville operator for the equations of motion, Eq. (6.85) (in Chap. 6), is

iL
(1)
NPT = iL

(1)
NVT + iL

(1)
NHB, (11.42)

where iL
(1)
NHB is given by

iL
(1)
NHB =

N∑

j=1

[−
(

1 + d

gf

)
πεvj ] · ∇vj +

[
πεqj

] · ∇qj
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+
(
Gε

W
− πεπη1

)
∂

∂πε

+ πε

∂

∂ε

+
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πηk

∂

∂ηk
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[
Gηk

Qbk

∂

∂πηk

− πηk+1πηk

∂

∂πηk

]
+ GηM

QbM

∂

∂πηM

. (11.43)

The chain thermostat part of the operator retains its previous definition. Similarly,
other choices for this splitting are possible, such as that given in Martyna et al.
(1996) and Kamberaj et al. (2005). We will use the following splitting to approxi-
mate evolution operator:
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)
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∂πηk

)

× exp

(
Δt

2

GηM
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× exp
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. (11.44)

The full approximate propagator, φΔt (Eq. 11.48), is applied to the full phase space
by first acting with operator

exp

(
Δt

2
πη1πε

∂

∂πε

)
exp(

Δt

2

Gε

W

∂

∂πε

)

to update the state vector (sk, ξk, ε, πε,q, v) (k = 1, · · · ,M). As one can see, it
updates only πε . Then the variables of the chain thermostat coupled to barostat are
updated precisely in the same way as the chains of thermostats variables associated
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with particles, already discussed in the previous case for the NVT ensemble. The
rest of the operator acts similarly to the NVT ensemble.

To update the coordinates a non-factorized operator was employed as was
suggested by Martyna et al. (1996) in order to maintain the second order accuracy
of factorization given by equation Eq. (11.48). The action of the operator

exp
(
Δt [v + πεq] · ∇q

)

can be simplified using the same procedure presented above by equations
Eqs. (11.38) and (11.39) as (Martyna et al. 1996):

exp
(
Δtπεq · ∇q

)
q(0) = exp (Δtπε)q(0) (11.45)

+Δt exp

(
Δt

2
πε

) sinh

(
Δt

2
πε

)

Δt

2
πε

v(0).

Similar to the case of the NVT ensemble, the term

sinh
(
Δt
2 πε

)

Δt
2 πε

that appears in the non-factorized result has a singularity for πε = 0, therefore it
is expanded in a Maclaurin series. We also considered only the first eight terms as
suggested in Martyna et al. (1996), which as will be shown here in the following
section do not decrease the overall accuracy of the integrator.

The explicit integration method can be written as shown by Algorithm 4.
In Eq. (11.46), UPDATENHCP (t → t +Δt) updates the chains of thermostats

coupled to translational degrees of freedom associated with α-species and is
described by equations Eq. (11.41). The chain thermostat variables coupled to
barostat are updated using UPDATENHCB (t → t +Δt) which is completely
described by Eq. (11.41) by substituting the variables of chain thermostat coupled
to particles with these coupled to barostat (see also discussion in Kamberaj et al.
2005).

For convenience we have written the steps to update the chain thermostat
variables coupled to barostat in the table presenting Algorithm 5.
Here, δt = (Δt/2)/nc and nc is the number of multiple steps. As above, the term

sinh (x)

x

has a singularity for x = 0, which can be removed by expanding it in a Maclaurin
series. Moreover, higher order integrator algorithms can also be constructed by
applying the Yoshida-Suzuki factorisation scheme (Yoshida 1990; Suzuki 1991).
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Algorithm 4 Numerical integrator for the NPT ensemble
 Step 1: Update velocities half-step and positions a full time step
UPDATENHCP (t → t +Δt/2)
UPDATENHCB (t → t +Δt/2)

πε

(
t + Δt

2

)
← πε(t)+ Δt

2
Gε(t)

ε (t +Δt) ← ε(t)+Δtπε

(
t + Δt

2

)

For i ← 1 to N

vi (t) ← vi (t)+ Δt

2
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vi

(
t + Δt

2
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2

))
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2

))
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2
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2
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2

) vi

(
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2

)

 Step 2: Calculate F(t +Δt)

For i ← 1 to N
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(
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2

)
← exp

(
−Δt

2

(
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))
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2

)

vi (t +Δt) ← vi

(
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2

)
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2

Fi (t +Δt)
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πε (t +Δt) ← πε

(
t + Δt

2

)
+ Δt

2
Gε (t +Δt)

UPDATENHCB (t +Δt/2 → t +Δt)

UPDATENHCP (t +Δt/2 → t +Δt) (11.46)

Similarly to the NVT ensemble, the dynamics generated by equations in the NPT
ensemble are not Hamiltonian, therefore, the algorithm is not symplectic, but it
is time-reversible (φΔtφ−Δt = 1) and correct to the second order as the Trotter
factorization scheme applied here (see Eq. (11.44)) is accurate to the second order.
The integration procedure implements in two steps as in the previous cases.

It is worth noting that other factorization schemes can also be proposed. In
particular, in NPT ensemble MD simulations when the system is far from the
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Algorithm 5 UPDATENHCB (δt)

For m ← 1 to nc

πε (t) ← πε(t) exp
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2
πη1 (t)
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2 − kBT )/Qb1

πηM

(
t + δt

2

)
← πηM (t)+ δt

2
GηM (t)

πηM−k

(
t + δt

2

)
← exp

(
− δt

4
πηM−k+1 (t)

)

×
[

exp

(
− δt

4
πηM−k+1 (t)

)
πηM−k (t)

+ δt

2
GηM−k

(t)

sinh

(
δt

4
πηM−k+1 (t)

)

δt

4
πηM−k+1 (t)

⎤

⎥⎥⎦ (k = 1, · · ·M − 1),

ηk(t + δt) ← ηk(t)+ δtπηk

(
t + δt

2

)
(k = 1, · · · ,M),

Gηk

(
t + δt

2

)
←

(
Qbk−1

(
πηk−1

(
t + δt

2

))2

− kBT

)
/Qηk

(k = 2, · · · ,M),

πηk (t + δt) ← exp

(
− δt

4
πηk+1

(
t + δt

2

))

×
[

exp

(
− δt

4
πηk+1

(
t + δt

2

))

× πηk

(
t + δt

2

)
+ δt

2
Gηk

(
t + δt

2

) sinh

(
δt

4
πηk+1

(
t + δt

2

))

δt

4
πηk+1

(
t + δt

2

)

⎤

⎥⎥⎦

(k = 1, · · · ,M − 1),

πηM (t + δt) ← πηM

(
t + δt

2

)
+ δt

2
GηM

(
t + δt

2

)

πε (t) ← πε(t) exp

(
− δt

2
πη1 (t + δt)

)
. (11.47)

equilibrium pressure and high fluctuations of the simulation box are expected. In
this case, we propose in the following another factorization scheme:
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)
πε

]
vj,α · ∇vj,α

⎞

⎠

× exp

(
Δt

2
πη1πε

∂

∂πε

)

× exp

(
Δt

2

Gε

W

∂

∂πε

)

× exp

(
Δt

2

∑

α

M−1∑

k=1

[
G

(α)
k

Q
(α)
pk

− π(α)
ηk+1

π
(α)
k

]
∂

∂π
(α)
ηk

)

× exp

(
Δt

2

∑

α

G
(α)
M

Q
(α)
pM

∂

∂π
(α)
M

)

× exp

⎛

⎝Δt

2

∑

α

Nα∑

j=1

[
−π(α)

η1

]
vj,α · ∇vj,α

⎞

⎠

× exp

(
i
Δt

2
L1

)

+ O
(
Δt3

)
≡ φΔt +O

(
Δt3

)
. (11.48)

11.7 Multiple Time Step Integrator

MD simulations of macromolecular systems, such as proteins characterized by
multiple time scales, show some disadvantage because of the small time steps used
to ensure the stability of numerical integration of the fast motions. Hence, the slow
conformation transitions are observed only after many time steps, which practically
requires a large number of force computations. However, developed methods such as
the Reference System Propagator Algorithm (RESPA) reduce computational efforts
for simulations of such system (Tuckerman et al. 1990, 1991; Tuckerman and Berne
1991a,b). The time-reversible approaches to the RESPA methods have also been
developed, named r-RESPA, which have shown to be very stable concerning the
order and stability of numerical integrator algorithms (Tuckerman et al. 1992). In
the following discussion, the r-RESPA is introduced using the Trotter factorization
of the classical Liouville propagation operator (Creutz and Goksch 1989; Raedt and
Raedt 1983; Takahashi and Imada 1984).
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Following the discussion in literature (Tuckerman et al. 1992) (see also Allen and
Tildesley 1989), for a system with f degrees of freedom the Liouville operator, L,
is defined as

iL = {· · · ,H } =
f∑

j=1

[
ẋj

∂

∂xj
+ ṗj

∂

∂pj

]
(11.49)

Eq. (11.49) uses the Cartesian coordinates with (xj , pj ) ≡ Γ being the position and
conjugate momenta of the system, ṗj gives the force along the j th direction, and
{· · · } represents the Poisson bracket of the system. L is a linear Hermitian operator
of square integrable function on the phase space of Γ . The dependence on L of the
time propagation operator is as follows:

U(t) = exp (iLt)

which is a unitary: U(−t) = U−1(t). The positions and their conjugate momenta
state point of the system at a given time t is defined as Γ (t) = U(t)Γ (0), which
allows determining one time step propagation as the following:

Γ (Δt) = exp (iLΔt) Γ (0)

where Δt = t/P is the size of a time step. Here, t represents the total evolution time
and P is the number of integration points.

The Liouville operator splits into n different terms as:

iL =
n∑

k=1

iLk

and use the Trotter factorization scheme (Trotter 1959), then the propagator
becomes

U(t) =
{[

n−1∑

k=1

Uk(Δt/2)

]
Un(Δt) (11.50)

×
[
n−1∑

k=1

Un−k(Δt/2)

]}P

+O(t3/P 2)

where Uk(h) = exp (iLkh). Denoting

G(Δt) =
[
n−1∑

k=1

Uk(Δt/2)

]
Un(Δt)
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×
[
n−1∑

k=1

Un−k(Δt/2)

]

As shown in Tuckerman et al. (1992), G(Δt)G(−Δt) = 1, therefore, G(Δt)

generates time-reversible dynamics.
The multiple time step integration algorithm uses splitting the system into the

fast and slow degrees of freedom. Equivalently, decomposing the forces entering
into the equations of motion into long-range forces, Fl(r) and short-range forces
Fs(r) (Tuckerman et al. 1992):

F(r) = Fs(r)+ Fl(r)

The short-range forces in the system associated with the slow degrees of freedom,
and thus, they define the multiple timesteps of the numerical integration, namely δt .
On the other hand, the long-range forces relate to the fast degrees of freedom, and
thus, they define the most extended time step of the numerical integration, namely
Δt . The relationship is as

δt = Δt

NMT S

(11.51)

where NMTS is the number of multiple steps. The short-range forces are evaluated
every timestep δt , and on the other hand, the long-range forces are evaluated after
every NMTS time steps (i.e., every time step Δt). Hence, the degrees of freedom
are advanced using Δt as a time step. Therefore, the r-RESPA implementation
procedure decreases the number of calls for evaluations of the forces, which reduces,
in turn, the overall computational time.

The main idea of the r-RESPA implementation (Tuckerman et al. 1992; Tucker-
man and Martyna 2000; Minary et al. 2004) is on determining a reference system
force Fs(r) for short range interactions. Then, Eq. (11.49) can be written in the
following form:

iL =
f∑

j=1

(
ẋj

∂

∂xj
+ Fs(xj )

∂

∂pj

+ Fl(xj )
∂

∂pj

)
(11.52)

= iLs +
f∑

j=1

Fl(xj )
∂

∂pj

and the propagator operator is factorized as

G(Δt) =
f∏

j=1

exp

(
Δt

2
Fl(xj )

∂

∂pj

)
(11.53)
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× exp (iLsΔt)

×
f∏

j=1

exp

(
Δt

2
Fl(xj )

∂

∂pj

)

where the operator exp (iLsΔt) propagates the state vector using the short-range
forces with a smaller time step δt (see Eq. 11.51). Here, this operator factorizes
using the Trotter formula as follows (Tuckerman et al. 1992):

exp (iLsΔt) =
⎡

⎣
f∏

j=1

exp

(
δt

2
Fs(xj )

∂

∂pj

)
(11.54)

×
f∏

j=1

exp

(
δtFs(xj )ẋj

∂

∂xj

)

×
f∏

j=1

exp

(
δt

2
Fs(xj )

∂

∂pj

)⎤

⎦
NMTS

Here, NMT S is usually chosen a priory to guarantee the stability of numerical
integrator (Tuckerman et al. 1992). Usually, when the operator G(Δt) is applied to
an initial state (r(0),p(0)), it gives a solution for both position and velocity similar
to Verlet numerical integrator (Tuckerman et al. 1992).

A Lennard-Jones type of fluid has only the translational relaxation time charac-
teristic; therefore, the numerical integration time step can easily be chosen (Tuck-
erman et al. 1992; Tuckerman and Parrinello 1994). However, for macromolecular
systems, indeed there exists more than one time-scale, such as those characterizing
the intra-molecular motion (e.g., bond stretching, angle bending, and dihedral
angle). Besides, the inter-molecular motion (e.g., van der Waals and electrostatic
interactions) is of the typical timescale of one or more orders in magnitude slower
than intra-molecular movement. Therefore, the system is characterized by stiff
nonlinear differential equations, requiring small enough time step to observe even
the fast motion, if treated using one time-scale.

High-frequency oscillators interacting with a bath of slow motion (Tuckerman
et al. 1990) or systems consisting of particles with different masses (e.g., large mass
particles, namely slow degrees of freedom, and small mass particles, namely fast
particles (Tuckerman et al. 1991)) represent other classes of systems characterized
by multiple time scale motions.

The approach treats the systems coupled to a Nosé heat bath (Nosé 1984a,b;
Hoover 1985b), too, used to keep temperature and pressure fixed during MD
simulations. The heat bath represents extra fast degrees of freedom of the system,
treated using multiple time stepping algorithms (Tuckerman et al. 1992), typically,
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two or more time steps. The method is used in all molecular dynamics simulation
runs throughout this book.

It is important to note that the approach is limited by the so-called resonance
phenomena, which restricts the use of time steps higher than Δt < 8 fs by r-
RESPA in MD simulations of macromolecular systems (Bishop et al. 1997; Schlick
et al. 1998; Ma et al. 2003). Note that not just time-reversible integrator algorithms,
but also multiple time step symplectic integrator algorithms (Skeel et al. 1997)
show numerical instability limiting the use of large time steps (Wolfram 2002).
According to Schlick et al. (1998), the resonance phenomena is the result of using
the perturbation techniques to derive the numerical integrator algorithms. These
problems overcome using numerical integration algorithms that allow increasing
the time steps in molecular dynamics simulations, such as the non-symplectic
Langevin Molly (LM) (Izaguirre et al. 2001) and the so-called LN integration algo-
rithms (Barth and Schlick 1998a,b). These methods allow using more substantial
time steps in MD simulations using stochastic approaches to increase the numerical
stability of integration. An improved version of r-RESPA integration algorithm,
namely the Targeted Mollified Impulse algorithm (Ma and Izaguirre 2003), which
includes the Langevin dynamics to improve the accuracy of multiple time stepping
integrator.

The resonance-free numerical integration algorithms (Minary et al. 2004) allow
for using time steps of the order up to 100 fs or even larger depending on the
time length correlations studied. These algorithms use non-Hamiltonian dynamics
to sample a canonical distribution of physical configuration space (Minary et al.
2004)

(q1, q2, · · · , q3N) ≡ ((x1, y1, z1), · · · , (xN , yN , zN))



Chapter 12
Generalized Ensemble Molecular
Dynamics Methods

Generalized ensemble molecular dynamics simulation methods can be used to
improve the sampling of lower energy configurations. In this class of methods the
following approaches have been widely used in simulations of macromolecular sys-
tems (Hansmann and Okamoto 1999): multicanonical sampling (Berg and Neuhaus
1991, 1992), the broad histogram method (de Oliveira et al. 1996; de Oliveira
1998), Wang-Landau algorithm (Wang and Landau 2001a), Tsallis weights meth-
ods (Tsallis 1988), and parallel tempering or replica exchange method (Penna 1995;
Hukushima and Nemoto 1996; Geyer 1992).

All of the above mentioned generalized-ensemble approaches have the same
starting point, that is, the replacement of canonical Boltzmann-like weights at
temperature T with non-Boltzmann weights, which allows the system is escaping
from the local minimum states.

In this chapter, we will discuss the choice of different weights for those methods
that are most often used in molecular dynamics simulations according to Kamberaj
(2019).

12.1 Multicanonical Sampling Method

In the multicanonical ensemble (MUCA), the states are multiplied by a non-
Boltzmann multicanonical factor, Wmu(E), generating in this way a uniform
probability distribution of the energy, Pmu(E) (Berg and Neuhaus 1991, 1992):

Pmu(E) ∝ Ω(E)Wmu(E) ≡ constant (12.1)

Therefore, the multicanonical ensemble represents a free random walks in the
potential energy space, since it is characterized by a flat distribution, and hence
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the system is able to escape faster any local energy minimum state. This yields an
enhancement of the sampling the configuration phase space in an MD simulation.
From Eq. (12.1), the non-Boltzmann weights are

Wmu(E) ≡ exp (−βEmu(E, β0)) ∝ 1

Ω(E)
(12.2)

where Emu(E, β0) is the multicanonical potential energy function given by

Emu(E, β0) = kBT0 lnΩ(E) = 1

kBβ0
S(E) (12.3)

where S(E) = kB lnΩ(E) is the entropy function of the microcanonical ensemble
and β0 is the multicanonical inverse temperature.

In general, the non-Boltzmann’s weights Wmu(E) are computed using short
MD simulation runs (Berg and Neuhaus 1991, 1992), which is a limitation of the
standard multicanonical ensemble approach.

The implementation of the MUCA in a MD simulation includes modification
of the equations of motion with new forces, F̃i (for i = 1, 2, · · · , gf ), as the
following (Bartels and Karplus 1998; Hansmann et al. 1996; Nakajima et al. 1997):

F̃i = −∂Emu(E, β0)

∂qi
= ∂Emu(E, β0)

∂E
Fi (12.4)

In Eq. (12.4), Fi is the Newton force along the i degree of freedom. Equation (6.29)
(see Chap. 6) are modified to describe the dynamics of a system in the multicanoni-
cal ensemble as:

dqi

dt
= pi

mi

(12.5)

dpi

dt
= β(E)

β0
Fi − πη1

Q1
pi

dπη1

dt
= p2

i

mi

− kBT − πη2

Q2
πη1

dπηk

dt
= π2

ηk−1

Qk−1
− kBT − πηk+1

Qk+1
πηk , k = 2, · · · ,M − 1 ,

dπηM

dt
= π2

ηM−1

QM−1
− kBT ,

dηk

dt
= πηk

Qk

, k = 1, · · · ,M ,
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where β denotes the simulation inverse temperature:

β(E0) = 1

kB

(
∂S(E)

∂E

)

E0

Usually, the multicanonical weighting factor is computed using short MD simula-
tion runs at some higher temperature T0 using a canonical ensemble (Berg and Celik
1992; Okamoto and Hansmann 1995), introduced in Chap. 6. From these simulation
runs, the multicanonical weighting factor is:

{
E

(1)
mu(E, β0) = E

W
(1)
mu(E, β0) = WB(E, β0) = exp(−β0E)

From the canonical ensemble MD simulation runs at the temperature T0, a
maximum value of energy Emax is estimated as an average of potential energy
function:

Emax = 〈E〉T0

For E ≤ Emax , a uniform energy distribution is obtained, and for E > Emax , the
system samples the canonical ensemble distribution at T0.

In the following we are explaining the basis of the algorithm. The probability
distribution weighting factor of the phase space at any given MD iteration time step
t is determined as:

W(t)(E, β0) = exp
(
−β0E

(t)(E, β0)
)

During the MD run a histogram N(t)(E) is accumulated of the potential energy
distribution P

(t)
mu(E). Denoting by E

(t)
min the minimum energy value obtained until

the t time step, at the (t + 1) time step the multicanonical potential energy is
determined as

E(t+1)
mu (E, β0) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E, E ≥ Emax

E
(t)
mu(E, β0)+ 1

β0
ln

(
N(t)(E)

)− c(t),

E
(t)
min ≤ E < Emax

β(t+1)(E
(t)
min)

β0

(
E − E

(t)
min

)

+E
(t+1)
mu (E

(t)
min, β0), E < E

(t)
min

(12.6)

Here, c(t) guarantees the continuity of energy function at E = Emax , defined as

c(t) = 1

β0
ln

(
N(t)(Emax)

)
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The MD simulation continues until an approximately uniform probability dis-
tribution of the potential energy function is obtained. This is established by
requiring that the values of energy for all E < Emax to be of the same order
of magnitude. If the convergence is achieved, E

(t)
min equals the global minimum

potential energy. Note that during MD simulation, a polynomial or sometimes a
cubic spline function (Sugita and Okamoto 2000) is used to fit the histograms each
MD simulation time step (Nakajima et al. 1997).

After the optimal weighting factor is determined, long MD simulation run in
the multicanonical ensemble is performed. It is important noting that to obtain an
ensemble average of any physical quantity, A, the Weighted Histogram Analysis
Method (WHAM) (Gallicchio et al. 2005) employs.

12.2 Tsallis Statistics Molecular Dynamics Method

Tsallis statistics molecular dynamics (TSMD) method (Tsallis 1988) is obtained
using the principle of maximum generalized entropy. In particular, this principle is
employed to obtain the so-called generalized statistical mechanics formalism with
the probability weights of the each point in the phase space determined as (Tsallis
1988)

WT (E, β) = expq (−β(E − E0)) (12.7)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

exp (−β (E − E0)) , q = 1

[1 − (1 − q)β(E − E0)]

1

1 − q , q �= 1 ∧ (1 − q)β(E − E0) < 1
0, q �= 1 ∧ (1 − q)β(E − E0) ≥ 1

In Eq. (12.7), q denotes an adjustable real parameter and E0 is the ground
state energy. Note that WT (E, β) > 0 and for q → 1, WT (E, β) equals the
Boltzmann’s weight. Besides, for q > 1 the Tsallis probability distribution is
characterized by longer tails. The weighting factor WT (E, β) of generalized Tsallis
distribution allows the excursion towards regions with higher energy by decreasing
the magnitude of the force close to these regions. This yields an increase of the
barrier crossing rate and hence allows the system escaping the local minimum
energy states (Andricioaei and Straub 1997; Sugita and Okamoto 1999; Kamberaj
and van der Vaart 2007; Kim and Straub 2009; Karolak and van der Vaart 2012).
This is also illustrated in Fig. 12.1 for an arbitrary potential energy function given as
U(x) = 0.1521(x4−2x2+1) (Fig. 12.1a, b), and for Lennard-Jones potential energy
function with ε = 0.1521 kcal/mol and rmin = 1.7682 Å (Fig. 12.1c, d). Here,
β = 1 and Tsallis parameter is taking the following values: q = 1.0, 1.5, 2.0, 3.0.
The plots are for both the potential energy function and its gradient. The graphs
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Fig. 12.1 The potential energy function and its gradient using Tsallis distribution function for
q = 1.0, 1.5, 2.0, 3.0. (a)–(b) For an arbitrary potential energy function given as U(x) =
0.1521(x4 − 2x2 + 1) (Barth et al. 2003); (c)–(d) For Lennard-Jones potential energy function
with ε = 0.1521 kcal/mol and rmin = 1.7682 Å. Here, β = 1

indicate both the decrease in the barrier heights and magnitude of the force close to
the barrier regions.

In the Tsallis statistical ensemble each state point of the phase space weighs by
a factor, WT(E, β) (Sugita and Okamoto 1999):

PT(E, β) ∝ Ω(E)WT(E, β) (12.8)

where the Tsallis weights are as the following (Sugita and Okamoto 1999)

WT (E, β) = exp (−βUeff)

Here, Ueff is the so-called effective potential defined as

Ueff(E, β) = 1

β(q − 1)
ln (1 + β(q − 1)(E − E0)) (12.9)

In the generalized ensemble, MD simulation runs using the new potential function
Ueff, replacing the force field potential energy function E. Then, new forces drive
the Newton’s equations of motion given as (Sugita and Okamoto 1999)

F̃i = −∂Ueff(E, β)

∂qi

= 1

1 + β(q − 1)(E − E0)
Fi (12.10)
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where Fi is the Newton force on particle i (i = 1, 2, · · · , N ). The equations of
motion governing the generalized canonical ensemble according to Tsallis statistics
are as the following:

dqi

dt
= pi

mi

(12.11)

dpi

dt
= 1

1 + β(q − 1)(E − E0)
Fi − πη1

Q1
pi

dπη1

dt
= p2

i

mi

− kBT − πη2

Q2
πη1

dπηk

dt
= π2

ηk−1

Qk−1
− kBT − πηk+1

Qk+1
πηk , k = 2, · · · ,M − 1 ,

dπηM

dt
= π2

ηM−1

QM−1
− kBT ,

dηk

dt
= πηk

Qk

, k = 1, · · · ,M .

There exist several applications of the TSMD method, such as simulation of
atomic clusters (Andricioaei and Straub 1996a, 1997), protein folding (Hansmann
and Okamoto 1997; Pak and Wang 1999; Fukuda and Nakamura 2002; Jang et al.
2008; Kamberaj and van der Vaart 2007), molecular docking (Pak and Wang 2000),
and replica exchange approach (Whitfield et al. 2002; Jang et al. 2003; Kim and
Straub 2009; Kamberaj and van der Vaart 2007).

12.3 Swarm Particle-Like Molecular Dynamics Method

Recently, Kamberaj (2015) introduced a new approach based on the swarm particle
social intelligence, which is tested to improve the conformation sampling (Kamberaj
2015, 2018). In this approach, in additional to the Newton force, generated from the
employed force field, a new random force is applied on each particle (Kamberaj
2015), similar to Langevin dynamics (Schlick 2010). Then, the MD equations of
motion given by Eq. (6.29) (see Chap. 6) modify as following (Kamberaj 2015,
2018):

dqi

dt
= pi

mi

(12.12)

dqLbest
i

dt
= pLbest

i

mi

δ
(
U(q) < U

(
qLbest

))
,
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dqGbest
i

dt
= pGbest

i

mi

δ
(
U(q) < U

(
qGbest

))
,

dpi

dt
= Fi − πη1

Q1
pi

+
m∑

j=1

Pij

(
γ1u1(c

Lbest
j − cj )+ γ2u2(c

Gbest
j − cj )

)

dpLbest
i

dt
= −γ1u1(q

Lbest
i − qi)

dpGbest
i

dt
= −γ2u2(q

Gbest
i − qi)

dπη1

dt
= p2

i

mi

− kBT − πη2

Q2
πη1

dπηk

dt
= π2

ηk−1

Qk−1
− kBT − πηk+1

Qk+1
πηk , k = 2, · · · ,M − 1 ,

dπηM

dt
= π2

ηM−1

QM−1
− kBT ,

dηk

dt
= πηk

Qk

, k = 1, · · · ,M

These equations (see Eq. (12.12)) determine an augmented dynamical system. The
vector c = (c1, c2, · · · , cm)T denotes the essential degrees of freedom in the
system, determined by the so-called collective coordinates. Projection operator, P,
transforms the real coordinates q to the collective coordinates c according to:

cj =
f∑

i=1

Pij qi

In Eq. (12.12), {cLbest
j }mj=1 and {cGbest

j }mj=1, updated every time step, are defined
as (Kamberaj 2018):

cLbest
j =

f∑

i=1

Pij q
Lbest
i

cGbest
j =

f∑

i=1

Pij q
Gbest
i
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Here, qLbest is configuration vector with the lowest value of the potential energy of
the system and qGbest is configuration vector of the final state of the system.

In Eq. (12.12), ui (i = 1, 2) denotes the uniformly distributed random numbers
in (0, 1), and γ1 and γ2 are adjustable fixed parameters.

In Eq. (12.12), δ function is given as:

δ
(
U(q) < U

(
qLbest

))
=

{
1, if U(q) < U

(
qLbest

)

0, otherwise

and

δ
(
U(q) < U

(
qGbest

))
=

{
1, if U(q) < U

(
qGbest

)

0, otherwise

The augmented dynamical system, determined by Eq. (12.12), sample an equilib-
rium canonical distribution with conserved total energy given by:

Eext =
gf∑

i=1

p2
i

2mi

(12.13)

+
( gf∑

i=1

(
pLbest
i

)2

2mi

)
δ
(
U(q) < U

(
qLbest

))

+
( gf∑

i=1

(
pGbest
i

)2

2mi

)
δ
(
U(q) < U

(
qGbest

))

︸ ︷︷ ︸
Etot,kin

+ U(q)+ 1

2

gf∑

j=1

[
u1γ1

(
qLbest
j − qj

)2 + u2γ2

(
qGbest
j − qj

)2
]

︸ ︷︷ ︸
Ubias

+
gf∑

i=1

M∑

k=1

(
Qi,kπ

2
i,ηk

2
+ kBT ηi,k

)

︸ ︷︷ ︸
Ethermo

where gf is the total number of degrees of freedom of the system, namely gf = 3N .
These equations represent an extended phase space of the augmented dynamical
system with real variables:

(
(qi, pi) ,

(
qLbest
i , pLbest

i

)
,
(
qGbest
i , pGbest

i

))
, i = 1, 2, · · · , gf
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and thermostats variables:

(
ηi,k, πi,ηk

)
, i = 1, 2, · · · , gf ; k = 1, 2, · · · ,M

In Eq. (12.13), Etot,kin is the total kinetic energy of augmented system, Ubias is the
total potential energy including bias term, and Ethermo is the thermostat energy. The
augmented dynamical system uses the WHAM to recover the canonical equilibrium
distribution of the real system (Kamberaj 2015, 2018). The augmented dynamical
system is shown to sample metastable, rare transition events, and to enhance the
conformation sampling (Kamberaj 2015, 2018). In Eq. (12.12), the first bias term
steers the system towards the state with the lowest energy, which has been visited
at any instant time t and hence enhancing the local basin sampling. Besides, the
second bias term indicates the “information” about configuration with the lowest
energy ever visited, and hence enhancing the barrier crossing rate.

Example 1 (Two-Dimensional Surface Model) To test the phase space sampling
efficiency of the SPMD algorithm, we considered the following potential energy
function model (Kamberaj 2018):

U(x, y) = −4 exp

(
−1

4
(x + 4)2 − y2

)
(12.14)

− 4 exp

(
−1

4
(x − 4)2 − y2

)

+ 1

5625

(
17

400
x6 + 1

2
(y − 2)6

)

+ 5 exp

(
−4x2 − 1

100
(y + 1)4

)

+ 5 exp

(
− 81

10000
x4 − 4y2

)

− 2 exp

(
−81

4

(
(x + 3)2 +

(
y − 24

5

)2
))

− 2 exp

(
−81

4

((
x + 1

2

)2

+
(
y − 16

5

)2
))

This potential function has two minimum stable states, namely the state A at
position (−4.0, 0.0) and state B at the position (4.0, 0.0). Besides, U(x, y) has
two metastable states, namely the metastable state I at the position (−3.0, 4.8) and
the metastable state II at the position (−0.5, 3.2). The two stable states A and B are
connected via a channel that passes through the metastable states I and II (Rogal
and Bolhuis 2008).
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Fig. 12.2 A two-dimensional scatter plot of x-coordinate versus y-coordinate for the model
potential energy function U(x, y), which has four minimum states, namely the stable states A

and B and the metastable states I and II . (a) For SPMD simulation run with γ1 = 0.01β and
γ2 = 0.1β; (b) For standard MD simulation run. A Nosé-Hoover chain of thermostats, with length
M = 3, was coupled to the system. The mass of particle moving in that two-dimension surface is
m = 1 amu. The target temperature is T = 300 K

Here, we assumed a particle with mass m = 1 amu moves on this two-
dimensional potential energy surface, which is also coupled to a heat bath taken
as a Nosé-Hoover chain of thermostats with length M = 3 and relaxation time
τ = 0.01 ps. The temperature of the bath was T = 300 K. Two MD simulations
run, the first using the standard MD method and the second using SPMD method.
In SPMD method, we fixed the parameters γ1 = 0.01β and γ2 = 0.1β. Both
simulations started at the particle position taken randomly in a square with minimum
and maximum coordinates along the x- and y-axes as (−8.0, +8.0). The initial
velocities were sampled according to the Maxwell-Boltzmann distribution at T =
300 K, the center of mass was constraint to zero. Total simulation run for each
simulation was 20 ns. The results are shown graphically in Fig. 12.2. In the SPMD
(single) simulation run, every time that one of the states was visited the global
best position was randomly chosen between three other minimum states with an
equal probability. While, the local best position are updated every time step to
the local best value of the potential energy function. Our data show that in the
SPMD simulation all the minimum states are visited, and more interestingly, the
path connecting the stable states A and B passes through metastable states I and II .
On the other hand, in standard MD simulation, which randomly started at a position
close to stable state B, only the region close to that state was sampled. These
results indicate that the SPMD approach is an efficient algorithm for improving
the sampling in the configuration phase space. Besides, there exists an efficient set
up for enhancing the transition pathways sampling, if the positions of the minimum
states are know.
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12.4 Replica Exchange Method

The generalized distributions for sampling the conformation phase space are also
generated using the so-called temperature replica exchange method (REM) (Wang
and Swendsen 1986; Neal 1996; Sugita and Okamoto 1999; Falcioni and Deem
1999; Earl and Deem 2005). REM solves the problems of quasi-ergodicity in
simulations of (bio)molecular systems using the so-called replicas, representing
the system, simulated independently at different temperatures (Wang and Swendsen
1986). For a system of N atoms with masses mi , position vector ri = (xi, yi, zi),
and conjugated momentum pi = (

pxi, pyi, pzi

)
, the standard REM of a gener-

alized ensemble corresponds to L independent replications of the original system
coupled to L chain of thermostats at different temperatures (Nosé 1984c; Hoover
1985a; Tuckerman et al. 1992) with equations of motion given here as the following
for each replica α:

dqi,α

dt
= pi,α

mi

(12.15)

dpi,α

dt
= Fi,α − π

(α)
η1

Q
(α)
1

pi,α

dπ
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dt
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i,α

mi

− kBTα − π
(α)
η2

Q
(α)
2

π(α)
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dπ
(α)
ηk

dt
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(α)
ηk−1)

2

Q
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k−1
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(α)
ηk+1

Q
(α)
k+1

π(α)
ηk

, k = 2, · · · ,M − 1 ,

dπ
(α)
ηM

dt
= (π

(α)
ηM−1)

2

Q
(α)
M−1

− kBTα ,

dη
(α)
k

dt
= π

(α)
ηk

Q
(α)
k

, k = 1, · · · ,M

Two replicas between the neighboring thermostats (e.g., i and j ) swap at regular
interval of times with a probability Pacc, which preserves the detailed balance
criteria (Wang and Swendsen 1986; Sugita and Okamoto 1999):

Pacc = min
{
1, exp

(−(βj − βi)(Ei − Ej)
)}

(12.16)

Here, Ei and Ej are, respectively, the total energies of replicas i and j . In REM,
high-temperature replicas are able to sample more states characterized by high
energies and hence cross more often high energy barrier. On the other hand,
low-temperature replicas sample more often potential energy basins and have less
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tendency to cross high energy barriers. The number of replicas in a standard REM
scales as the square root of system’s degrees of freedom (Fukunishi et al. 2002).
Therefore, for systems with large number of degrees of freedom, the number of the
replicas increases significantly, requiring longer MD simulation runs, necessary to
optimize the rate of round trips between the two extreme temperatures.

Using implicit or combination of explicit/implicit solvent models allows decreas-
ing the number of degrees of freedom coupled to thermostats and hence improving
the optimization of the REM algorithm (Bashford and Case 2000; Zhou and Berne
2002; Zhou 2003; Garcia and Onuchic 2003; Okur et al. 2006). Other approaches
include the coupling of solvent and solute to separate thermostats (Cheng et al.
2005). However, for the macromolecular systems, that reductions in system size may
not accurately describe the structure and dynamics of the system (Zhou and Berne
2002; Zhou 2003; Garcia and Onuchic 2003; Liu et al. 2005). Temperature scaling
of the solvent-solvent and solvent-protein interactions in REM reduced the number
of replicas (Liu et al. 2005). Also, using the Tsallis biasing potential added to each
replica improved further the sampling of the REM (Kamberaj and van der Vaart
2007).

Optimization of the temperature distribution among the replicas was subject
of several studies, including the protein folding/unfolding transitions (Sugita and
Okamoto 1999; Predescu et al. 2004, 2005; Berg 2004; Kone and Kofke 2005; ?;
Rathore et al. 2005; Gront and Kolinski 2007; Trebst et al. 2004; Katzgraber et al.
2006; Trebst et al. 2006; Nadler and Hansmann 2007; Escobedo and Martinez-
Veracoechea 2007; Sabo et al. 2008; Li et al. 2007). Further modifications of the
REM algorithm (Kamberaj and van der Vaart 2009) aim to obtain a flat generalized
probability distribution function in temperature space using the Wang-Landau
algorithm (Wang and Landau 2001b,c). It is important to note that a WHAM is
used for analyzing the data from all replicas as discussed in Chodera et al. (2007).

12.5 Swarm Particle-Like Replica Exchange Method

A combination of the replica exchange method with the swarm particle-like
molecular dynamics (REM:SPMD) showed to improve conformation sampling
when applied to Lennard-Jones atomic cluster systems (Kamberaj 2015) and
protein folding problems (Kamberaj 2018). Here, the equations of motion of the
REM:SPMD algorithm are as the following (Kamberaj 2018):

dqi,α

dt
= pi,α

mi

(12.17)

dqLbest
i,α

dt
= pLbest

i,α

mi

δ
(
U(qα) < U

(
qLbest
α

))
,
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dqGbest
i,α

dt
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In Eq. (12.17), all the variables have the same meaning as in Eqs. (12.12) and
(12.15) for the replica α. {cGbest

j }mj=1 denotes the global best coordinates qGbest

representing configuration with the lowest energy among all replicas through the
projection operator P:

cGbest
j =

f∑

i=1

Pij q
Gbest
i

Eq. (12.17) preserves the detailed balance condition (Kamberaj 2018), assuming
that a Markovian chain of states is generated using a REM:SPMD simulation run.
In that case, the probability of obtaining a trajectory in the configuration space of
the replica k can be written as:

Pk(Xk
T ) = exp

(−βkE(xk,0)
) T−1∏

t=0

π(xk,t → xk,t+1) (12.18)
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βk denotes the inverse temperature of the thermostat k and E(xk,t ) the total energy
obtained for the configuration xk,t . Here, Xk

T vector represents T snapshots of the
system (i.e., a trajectory) from replica k:

Xk
T = {

xk,0 → xk,1 → · · · → xk,T−1
}

The initial configurations of the replicas are obtained according to a canonical
distribution using an unbiased energy of the system as given by the force field for
replica k E(xk,0):

ρinit (xk,0) = exp
(−βkE(xk,0)

)

In Eq. (12.18), π(xk,t → xk,t+1) is the time step propagation probability,
which depends on the details of deterministic or stochastic dynamics. In general,
the Markovian transition probability π(xk,t → xk,t+1) can have any distribution
that conserves the Boltzmann distribution. Here, π(xk,t → xk,t+1) represents the
action characterized by augmented system given in Eq. (12.17), which produces a
Boltzmann distribution in the extended phase space of variables. In the general case
of the Newtonian dynamics, we can write:

p(xt → xt+1) = δ (xt+1 −ΦΔt(xt ))

where δ is the delta function and ΦΔt(xt ) is the discrete flow map of one time step
Δt propagation operator. In this case, a trajectory can be generated using an initial
state sampled from some canonical distribution and then propagating in time using
usual Hamiltonian dynamics. Note that for Hamiltonian dynamics is easy to find a
time-reversible discrete flow map. On the other hand, when dynamics are governed
by Eq. (12.17), the structure is not symplectic, but still, it is time reversible.

The WHAM is used to analyze the data from all replicas in the case of
REM:SPMD simulations introduced in Kamberaj (2015, 2018).

12.6 Weighted Histogram Analysis Method

To analyze the data from replica exchange molecular dynamics simulation, often,
the WHAM is employed. WHAM is considered an efficient approach of data
processing since it combines all the data from replicas and thus the predictions
include all statistical fluctuations. In WHAM, K copies of the same system (namely
the replicas) are in equilibrium with L thermostats at inverse temperature β ( =
1, 2, · · · , L). Besides, to the unbiased potential energy, U (qk) ( = 1, 2, · · · , L;
k = 1, 2, · · · ,K) of each replica a biasing potential energy term is added ΔU (qk).
A histogram of M bins counts the unbiased potential energy values combining all
of the replicas, with Um (m = 1, 2, · · · ,M) being the energy at the center of the
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bin. In WHAM, for each replica k and histogram unbiased potential energy bin
m, we count the number of independent configurations, namely Hkm. The energy
probability distribution of the system counted at the bin m visiting the thermostat  
is as the following (Gallicchio et al. 2005):

P m = Z−1
 C mΩme

−β0Um (12.19)

where Ωm = Ω(Um) is the density of states at the energy Um, associated with bin
m, and the constant C m is a bias term that determines both the effect of temperature
and biasing potential in probability distribution as:

C m = exp (− (β − β0) Um)× exp (−β ΔU ) (12.20)

In Eq. (12.19), Ωme
−β0Um gives the unbiased probability of observing the system at

the bin m at the target temperature and Z is the partition function at β . Note that
the normalization condition is:

M∑

m=1

P m = 1

Combination of Eqs. (12.19) and (12.20) gives

P m = Ωme
−β (U

bias
m −F ) (12.21)

where Ubias
m is the bias potential energy value at the center of bin m and F is the

so-called Helmholtz free energy:

F = −(1/β ) lnZ 

Here, F is evaluated using an iterative procedure. For that, let nk be the number
of configurations saved from replica k visiting thermostat  , then the accumulated
probability density for energy bin m is:

Pm = Ωm

K∑

k=1

L∑

 =1

nk 

Nk

e−β (U
bias
m −F ) (12.22)

where Nk is the total number of configurations saved from the replica k. Besides,
Pm can also be approximated as (Chodera et al. 2007):

Pm ≈
K∑

k=1

Hkm

Nk

(12.23)



438 12 Generalized Ensemble Molecular Dynamics Methods

Using Eqs. (12.22) and (12.23), we get

Ωm =

K∑
k=1

Hkm

K∑
k=1

L∑
 =1

nk e
−β (U

bias
m −F )

(12.24)

F = − 1

β 

ln
M∑

m=1

Ωme
−β U

bias
m

Accounting for possible correlations between configurations saved from simula-
tions, a histogram bin statistical inefficiency for each energy bin m from replica
k, gkm, is evaluated (Chodera et al. 2007), which determines the effective number of
snapshots from replica k with unbiased potential energy counted at the bin m, H eff

km,
and the effective number of snapshots from replica k in equilibrium with thermostat
 , neff

k :

H eff
km = Hkm

gkm
; neff

k = nk 

gkm

Then, the calculated density of states Ω̂m is:

Ω̂m =

K∑
k=1

H eff
km

K∑
k=1

L∑
 =1

neff
k e

−β (U
bias
m −F )

(12.25)

F = − 1

β 

ln
M∑

m=1

Ω̂me
−β U

bias
m

From Eq. (12.25), Ω̂m depends on F , and, in turn, F depends on Ω̂m. Therefore,
F and Ω̂m are usually determined using an iterative procedure from Eqs. 12.25;
starting from some arbitrary choice F = 0 ( = 1, 2, · · · , L), iteration continues
until a desired value of error is established. The statistical error σ 2

Ω̂m
of Ω̂m is as

follows (Chodera et al. 2007):

σ 2
Ω̂m

= Ω̂m

K∑
k=1

L∑
 =1

neff
k e

−β (U
bias
m −F )

(12.26)

The predicted average value of some physical quantity A of the system at the
reference inverse temperature β0 is calculated by summing the weighted values from
all configurations:
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Â(β0) =

K∑
k=1

Nk∑
n=1

Wkn(β0)Akn

K∑
k=1

Nk∑
n=1

Wkn(β0)

(12.27)

In Eq. (12.27), Wkn(β0) are the weights given by

Wkn(β0) =
M∑

m=1

Ω̂m

Hkm

e−β0Um

The chain rule of error propagation is used to obtain the statistical error of
Â(β0) (Chodera et al. 2007):

σ 2
Â
=

( 〈X〉
〈Y 〉

)2
(

σ 2
X

(〈X〉)2 + σ 2
Y

(〈Y 〉)2 − 2
σ 2
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where

〈X〉 = 1

Nk

Nk∑

n=1

Wn(β0)An (12.29)

〈Y 〉 = 1

Nk

Nk∑
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Wn(β0) (12.30)

σ 2
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(Wn(β0)An − 〈X〉)2 (12.31)

σ 2
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Nk(Nk − 1)
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(Wn(β0)− 〈Y 〉)2 (12.32)

σ 2
XY = gXY

Nk(Nk − 1)

Nk∑
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(Wn(β0)An − 〈X〉) (12.33)

× (Wn(β0)− 〈Y 〉)

Here, gX(Y,XY) are the statistical inefficiencies determined from (auto)correlation
functions of replica exchange simulations.

If ΔU = 0 ( = 1, 2, · · · , L), the standard WHAM of replica exchange
simulations is obtained, discussed already in the literature (Chodera et al. 2007).
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